Формулы деления отрезка в данном отношении.
Формулы координат середины отрезка
Прошло совсем немного времени, с того момента, когда пилотным выпуском появилась моя первая статья по аналитической геометрии – Векторы для чайников. Затем последовал важный урок Скалярное произведение векторов, а также Линейная (не) зависимость векторов. Базис векторов и Векторное и смешанное произведение векторов. После кропотливого труда я вдруг заметил, что размеры веб страниц достаточно велики, и если так пойдёт дальше, то можно тихо мирно озвереть =) Поэтому предлагаю вашему вниманию небольшое эссе, посвященное очень распространённой геометрической задаче – о делении отрезка в данном отношении, и, как частный случай, о делении отрезка пополам.
Данная задача по тем или иным причинам не вписалась в другие уроки, но зато сейчас есть прекрасная возможность рассмотреть её подробно и неторопливо. Приятная новость состоит в том, что мы немного отдохнём от векторов и сконцентрируем внимание на точках и отрезках.
Формулы деления отрезка в данном отношении
Понятие деления отрезка в данном отношении
Нередко обещанного вовсе ждать не приходится, сразу рассмотрим пару точек и, очевидное невероятное – отрезок :
Рассматриваемая задача справедлива, как для отрезков плоскости, так и для отрезков пространства. То есть, демонстрационный отрезок можно как угодно разместить на плоскости или в пространстве. Для удобства объяснений я нарисовал его горизонтально.
Что будем делать с данным отрезком? На этот раз пилить. Кто-то пилит бюджет, кто-то пилит супруга, кто-то пилит дрова, а мы начнём пилить отрезок на две части. Отрезок делится на две части с помощью некоторой точки , которая, понятно, расположена прямо на нём:
В данном примере точка делит отрезок ТАКИМ образом, что отрезок в два раза короче отрезка . ЕЩЁ можно сказать, что точка делит отрезок в отношении («один к двум»), считая от вершины .
На сухом математическом языке этот факт записывают следующим образом: , или чаще в виде привычной пропорции: . Отношение отрезков принято стандартно обозначать греческой буквой «лямбда», в данном случае: .
Пропорцию несложно составить и в другом порядке: – сия запись означает, что отрезок в два раза длиннее отрезка , но какого-то принципиального значения для решения задач это не имеет. Можно так, а можно так.
Разумеется, отрезок легко разделить в каком-нибудь другом отношении, и в качестве закрепления понятия второй пример:
Здесь справедливо соотношение: . Если составить пропорцию наоборот, тогда получаем: .
После того, как мы разобрались, что значит разделить отрезок в данном отношении, перейдём к рассмотрению практических задач.
Формулы деления отрезка в данном отношении на плоскости
Если известны две точки плоскости , то координаты точки , которая делит отрезок в отношении , выражаются формулами:
Откуда взялись данные формулы? В курсе аналитической геометрии эти формулы строго выводятся с помощью векторов (куда ж без них? =)). Кроме того, они справедливы не только для декартовой системы координат, но и для произвольной аффинной системы координат (см. урок Линейная (не) зависимость векторов. Базис векторов). Такая вот универсальная задача.
Найти координаты точки , делящей отрезок в отношении , если известны точки
Решение: В данной задаче . По формулам деления отрезка в данном отношении, найдём точку :
Ответ:
Обратите внимание на технику вычислений: сначала нужно отдельно вычислить числитель и отдельно знаменатель. В результате часто (но далеко не всегда) получается трёх- или четырёхэтажная дробь. После этого избавляемся от многоэтажности дроби и проводим окончательные упрощения.
В задаче не требуется строить чертежа, но его всегда полезно выполнить на черновике:
Действительно, соотношение выполняется, то есть отрезок в три раза короче отрезка . Если пропорция не очевидна, то отрезки всегда можно тупо измерить обычной линейкой.
Равноценен второй способ решения: в нём отсчёт начинается с точки и справедливым является отношение: (человеческими словами, отрезок в три раза длиннее отрезка ). По формулам деления отрезка в данном отношении:
Ответ:
Заметьте, что в формулах необходимо переместить координаты точки на первое место, поскольку маленький триллер начинался именно с неё.
Также видно, что второй способ рациональнее ввиду более простых вычислений. Но всё-таки данную задачу чаще решают в «традиционном» порядке. Например, если по условию дан отрезок , то предполагается, что вы составите пропорцию , если дан отрезок , то «негласно» подразумевается пропорция .
А 2-ой способ я привёл по той причине, что частенько условие задачи пытаются намеренно подзапутать. Именно поэтому очень важно выполнять черновой чертёж чтобы, во-первых, правильно проанализировать условие, а, во-вторых, в целях проверки. Обидно допускать ошибки в такой простой задаче.
Даны точки . Найти:
а) точку , делящую отрезок в отношении ;
б) точку , делящую отрезок в отношении .
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Иногда встречаются задачи, где неизвестен один из концов отрезка:
Точка принадлежит отрезку . Известно, что отрезок в два раза длиннее отрезка . Найти точку , если .
Решение: Из условия следует, что точка делит отрезок в отношении , считая от вершины , то есть, справедлива пропорция: . По формулам деления отрезка в данном отношении:
Сейчас нам неизвестны координаты точки : , но это не является особой проблемой, так как их легко выразить из вышеприведённых формул. В общем виде выражать ничего не стОит, гораздо проще подставить конкретные числа и аккуратно разобраться с вычислениями:
Ответ:
Для проверки можно взять концы отрезка и, пользуясь формулами в прямом порядке, убедиться, что при соотношении действительно получится точка . И, конечно же, конечно же, не лишним будет чертёж. А чтобы окончательно убедить вас в пользе клетчатой тетради, простого карандаша да линейки, предлагаю хитрую задачу для самостоятельного решения:
Точка . Отрезок в полтора раза короче отрезка . Найти точку , если известны координат точек .
Решение в конце урока. Оно, кстати, не единственное, если пойдёте отличным от образца путём, то это не будет ошибкой, главное, чтобы совпали ответы.
Формулы деления отрезка в данном отношении в пространстве
Для пространственных отрезков всё будет точно так же, только добавится ещё одна координата.
Если известны две точки пространства , то координаты точки , которая делит отрезок в отношении , выражаются формулами:
.
Даны точки . Найти координаты точки , принадлежащей отрезку , если известно, что .
Решение: Из условия следует отношение: . Данный пример взят из реальной контрольной работы, и его автор позволил себе небольшую шалость (вдруг кто споткнётся) – пропорцию в условии рациональнее было записать так: .
По формулам координат середины отрезка:
Ответ:
Трёхмерные чертежи в целях проверки выполнять значительно сложнее. Однако всегда можно сделать схематический рисунок, чтобы разобраться хотя бы в условии – какие отрезки необходимо соотносить.
Что касается дробей в ответе, не удивляйтесь, обычное дело. Много раз говорил, но повторюсь: в высшей математике принято орудовать обыкновенными правильными и неправильными дробями. Ответ в виде пойдёт, но вариант с неправильными дробями более стандартен.
Разминочная задача для самостоятельного решения:
Даны точки . Найти координаты точки , если известно, что она делит отрезок в отношении .
Решение и ответ в конце урока. Если трудно сориентироваться в пропорциях, выполните схематический чертёж.
В самостоятельных и контрольных работах рассмотренные примеры встречаются как сами по себе, так и составной частью более крупных задач. В этом смысле типична задача нахождения центра тяжести треугольника.
Разновидность задания, где неизвестен один из концов отрезка, разбирать не вижу особого смысла, так как всё будет похоже на плоский случай, разве что вычислений чуть больше. Лучше вспомним годы школьные:
Формулы координат середины отрезка
Даже неподготовленные читатели могут помнить, как разделить отрезок пополам. Задача деления отрезка на две равные части – это частный случай деления отрезка в данном отношении. Двуручная пила работает самым демократичным образом, и каждому соседу за партой достаётся по одинаковой палке:
В этот торжественный час стучат барабаны, приветствуя знаменательную пропорцию . И общие формулы чудесным образом преображаются в нечто знакомое и простое:
Удобным моментом является тот факт, что координаты концов отрезка можно безболезненно переставить:
В общих формулах такой роскошный номер, как понимаете, не проходит. Да и здесь в нём нет особой надобности, так, приятная мелочь.
Для пространственного случая справедлива очевидная аналогия. Если даны концы отрезка , то координаты его середины выражаются формулами:
Параллелограмм задан координатами своих вершин . Найти точку пересечения его диагоналей.
Решение: Желающие могут выполнить чертёж. Граффити особенно рекомендую тем, кто капитально забыл школьный курс геометрии.
По известному свойству, диагонали параллелограмма своей точкой пересечения делятся пополам, поэтому задачу можно решить двумя способами.
Способ первый: Рассмотрим противоположные вершины . По формулам деления отрезка пополам найдём середину диагонали :
Способ второй: Рассмотрим противоположные вершины . По формулам деления отрезка пополам найдём середину диагонали :
Ответ:
Пространственный отрезок для самостоятельного решения:
Даны точки . Найти середину отрезка .
Вычисления не самые простые получились, числа с ходу придумал. Решение в конце урока.
Как видите, задача деления отрезка пополам настолько прозрачна, что доступна и пятикласснику. На практике середину отрезка чаще всего находят, чтобы составить уравнение медианы треугольника. Но это уже тема другой статьи
Не вижу смысла открывать трёхлитровую банку примеров, поэтому заключительный аккорд урока – случай, когда известна середина отрезка и один из его концов:
Точка делит отрезок пополам. Найти точку , если известны точки
Решение: Используем формулы координат середины отрезка:
Нам неизвестны координаты . И снова можно вывести общую формулу для их нахождения, но гораздо легче сразу подставить числа. Только пропорциями верти:
Ответ:
Проверка выполняется даже устно: берём концы отрезка и находим его середину.
Решения и ответы:
Пример 2: Решение:
а) . Используем формулы деления отрезка в данном отношении:
Ответ:
б) . Используем формулы деления отрезка в данном отношении:
Ответ:
Пример 4: Решение: Используем формулы деления отрезка в данном отношении:
Из условия следует, что .
Примечание: формулировка условия «отрезок в полтора раза короче отрезка » эквивалентна формулировке «отрезок в полтора раза длиннее отрезка », именно из этих соображений и составлена пропорция.
По условию , таким образом:
Ответ:
Пример 6: Решение: Используем формулы деления отрезка в данном отношении:
В данной задаче .
Таким образом:
Ответ:
Пример 8: Решение: Используем формулы координат середины отрезка:
Ответ:
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам,
cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5
© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено
Отношения отрезков
мы можем найти бесчисленное множество решений этого уравнения: можно принять x равным любому числу (например, 0; 1; 2; и т. д.); тогда найдем соотв. число для y (0; 3; 6; и т. д.).
Данное уравнение можно еще написать в виде
(2)
Пусть теперь требуется построить два отрезка таких, чтобы они удовлетворяли уравнению (1). Эта задача также легко решается: построим (чер. 179) произвольный отрезок x и затем на какой-либо прямой отложим от какой-либо ее точки этот отрезок 3 раза, – получим искомый отрезок y. Таких пар отрезков, удовлетворяющих уравнению (1), можно найти бесчисленное множество. Принято и в том случае, когда x y в уравнении (1) означают не числа, а отрезки, писать это уравнение не только в виде уравнения (1), но и в форме уравнения (2), хотя мы и не умеем делить отрезок y на отрезок x. Можно смотреть на уравнение (2) с той точки зрения, что здесь дается новая форма для выражения числа 3: число 3 здесь представлено в виде символа , где y и x отрезки. Этот символ называется отношением отрезка y к отрезку x.
Подобно этому, можно также решить отрезками уравнение (см. чер. 180), для чего надо лишь умение делить любой отрезок на сколько угодно равных частей. Так же точно, согласно предыдущему условию, мы можем, понимая под y и x отрезки, написать наше уравнение в виде , которое прочтем: «отношение отрезка y к отрезку x равно числу . На последнее уравнение можно также смотреть, как на новую форму выражения числа . Из этих примеров можно прийти к общему заключению:
всякое целое или дробное число можно представить в форме отношения двух отрезков.
165. Возникает мысль о задаче, обратной тем, какие решались в предыдущем п., т. е.: даны два отрезка A и B (чер. 181); требуется для них составить уравнение вида A = k · B или A/B = k, где k — какое-либо число.
Если действительно удастся составить такое уравнение, если, напр., получим A = 37B или получим , то мы видим, что решение этой задачи должно основаться на существовании такого третьего отрезка, который укладывается на каждом из данных по целому числу раз; в примере A = 37B таким отрезком является сам B: он укладывается 37 раз на отрезке A и 1 раз на самом себе; во втором примере () таким отрезком является отрезок, равный части отрезка B: он укладывается 39 раз на отрезке A и 29 раз на отрезке B.
общею мерою двух отрезков такой третий отрезок, который укладывается по целому числу раз на каждом из данных отрезков.
В первом из предыдущих примеров (A = 37B) общею мерою отрезков A и B служит сам отрезок B: он укладывается 37 раз на A и один раз на B.
Во втором случае () общей мерою отрезков A и B служит 29-я доля отрезка B: она укладывается 39 раз на A и 29 раз на B.
Итак, для решения нашей обратной задачи необходима общая мера двух данных отрезков. Вот пример, на котором выясняется, как можно в некоторых случаях найти общую меру двух отрезков.
Пусть имеем отрезок AB и отрезок CD (чер. 182). Попытаемся найти общую меру отрезков AB и CD.
Попытаем сначала, не уложится ли меньший из них, в данном случае отрезок AB, на отрезке CD целое число раз. Если AB уложится на CD целое число раз, то AB и есть общая мера между AB и CD (на AB укладывается 1 раз и на CD укладывается, например, 3 раза). Допустим, что AB на CD укладывается 2 раза с остатком FD. Тогда попытаем, не уложится ли этот остаток FD на отрезке AB целое число раз: если бы уложился целое число раз на AB, то и уложился бы целое число раз и на CF и на CD, т. е. тогда отрезок FD был бы общею мерою. Допустим (как на чертеже), что FD на AB укладывается 1 раз с остатком KB. Тогда, исходя из тех же соображений, пробуем, не уложится ли KB на FD без остатка; допустим, что KB на FD укладывается 2 раза с остатком LD. Затем пробуем, не уложится ли LD на KB без остатка и допустим, что, наконец, достигли этого, т. е. пусть LD укладывается на KB 3 раза без остатка. (Делая это допущение, мы тем самым признаем возможность случая, что никогда не достигнем того, чтобы полученный остаток в предыдущем укладывался целое число раз без нового остатка.) Тогда LD и является общею мерою. Остается сосчитать, сколько раз эта общая мера укладывается на отрезках AB и CD. Для этого запишем те наложения, которые мы выполняли.
CD = 2AB + FD | CD = 27LD
AB = FD + KB | AB = 10LD
FD = 2KB + LD | FD = 7LD
KB = 3LD |
Второй столбец этой записи составляется по направлению снизу вверх: FD = 2KB + LD = 6LD + LD = 7LD; AB = FD + KB = 7LD + 3LD = и т. д.
Теперь мы видим, что общею мерою наших отрезков является отрезок LD, который есть 1/10 доля отрезка AB, так как AB = 10LD, т. е.
Но мы получили, что CD = 27LD; следовательно,
Второе из этих уравнений читают: отношение отрезка CD к отрезку AB равно числу 27/10, а первое можно понимать так: отрезок CD измерили отрезком AB (принимая за единицу отрезок AB) и получили число 27/10, подобно тому, как запись:
«Высота дерева равна аршина» понимают в том смысле, что высота дерева (отрезок) измерена аршином и получилось число .
Если бы, наоборот, нам потребовалось найти AB/CD (отношение AB к CD) или измерить отрезок AB, принимая за единицу CD, то, конечно, общая мера осталась бы та же самая, т. е. LD, но тогда отрезок LD был бы 1/27 долею единицы CD, т. е.
Нахождение общей меры выполняется в таком порядке: укладываем меньший отрезок на большем, полученный остаток на меньшем, новый остаток на предыдущем и т. д., пока остатка не получится; последний остаток и является общею мерою двух данных отрезков.
Следует заметить, что найденная таким образом общая мера является наибольшею: всякая часть ее также будет общею мерою; например, если найденная общая мера укладывается 10 раз на AB и 27 раз на CD, то ее третья доля укладывается 30 раз на AB и 81 раз на CD.
166. Изложим теперь в общем виде ход мысли при решении задачи «найти отношение двух данных отрезков», допуская, что они имеют общую меру.
Пусть требуется найти CD/AB (чер. 183) или, что то же самое, измерить отрезок CD, принимая за единицу отрезок AB. Тогда находим согласно предыдущему общую меру отрезков CD и AB (согласно допущению это возможно) и рассуждаем теперь в общем виде: положим, что общая мера на отрезке AB укладывается n раз и на отрезке CD — m раз. Тогда общая мера равна 1/n доли единицы AB и таких долей в CD уложилось m. Следовательно,
Последнее уравнение можно истолковать так: дробь m/n выражена в новой форме, в виде отношения отрезков CD и AB.
Возникает вопрос, всегда ли возможно найти общую меру двух данных отрезков? Быть может, сколько бы мы ни продолжали процесс ее нахождения, никогда не удастся дойти до того, чтобы последний остаток уложился на предыдущем целое число раз? Практика не может дать ответа на этот вопрос, так как с одной стороны, какой бы хороший циркуль мы ни употребляли для отложения отрезков, всегда при этом делаются ошибки, а с другой стороны, приходится иметь дело со столь мелкими отрезками, что невозможно решить вопрос, откладывается ли полученный отрезок на другом без остатка.
В следующем п. мы рассуждением убедимся, что мы можем построить такие отрезки, которые не имеют общей меры.
Два отрезка, имеющие общую меру, называются соизмеримыми, а неимеющие общей меры, называются несоизмеримыми.
167. Построим прямоугольный равнобедренный треугольник ABC (чер. 184); это построение легко выполняется: строим прямой угол B и на его сторонах откладываем произвольные, но равные отрезки BA = BC.
2) DK = KB, так как это суть отрезки касательных, проведенных к кругу через точку K (KB ⊥ AB, следовательно, KB есть касательная; так же и KD), ограниченные этою точкою K и точками касания (п. 139). Итак, имеем BK = KD = DC, т. е. на катете BC уложили один раз отрезок DC, после чего остается остаток KC, который служит гипотенузою прямоугольного равнобедренного треугольника KDC. Мы уже теперь, на основании исследования прямоугольного равнобедренного треугольника ABC, можем утверждать: 1) что катет DC этого треугольника уложится на KC один раз с остатком (следовательно, DC укладывается на BC два раза с остатком), 2) что после этого мы придем опять к тому же: этот остаток (CL) должно укладывать на катете DC прямоугольного равнобедренного треугольника KDC, и он, как мы уже знаем, уложится на DC два раза с остатком (CN), который в свою очередь уложится на CL два раза с остатком и т. д. Из этого мы видим, что наш процесс нахождения общей меры никогда не должен кончиться: всякий раз, отложив последний остаток один раз на предыдущем, мы придем опять к прямоугольному равнобедренному треугольнику, катет которого надо откладывать на гипотенузе, а мы знаем, что он уложится на гипотенузе еще один раз с остатком, — следовательно, всякий раз последний остаток укладывается в предыдущем два раза с остатком. Итак, общей меры нет, т. е.
Гипотенуза и катет равнобедренного прямоугольного треугольника несоизмеримы.
168. Целые и дробные числа вместе называются рациональными числами. Если мы хотим считать, что отношение двух отрезков y и x, т. е. символ y/x всегда равен числу, то рациональных чисел недостаточно, и математика расширяет понятие о числе 1) так, чтобы всегда можно было считать, что отношение двух отрезков равно числу: если отрезки соизмеримы, то отношение их равно какому-либо рациональному числу; если отрезки несоизмеримы, то условимся, что их отношение выражает собою какое-то новое число, которое назовем иррациональным.
1) Расширение понятия о числе проводится во всем курсе математики: первоначально мы имеем дело лишь с целыми числами; желание, чтобы действие деление всегда оказалось бы выполнимым, заставляет обобщать понятие о числе, – и мы вводим в семью чисел дробные числа; желание, чтобы вычитание оказалось всегда возможным, заставляет еще в семью чисел ввести отрицательные числа. Далее вводится еще иррациональные и мнимые числа. Каждое обобщение понятия о числе должно быть сделано так: 1) надо, чтобы все члены расширенной области чисел оказались равноправными; 2) надо, чтобы о каждой паре чисел можно было бы установить, равны ли они между собою, или одно из них больше другого (или меньше), причем должны иметь место аксиомы для понятий «равно», «больше» и «меньше» [a) если A = B, то и B = A; b) если A = B и B = C, то A = C; с) если A = B и B > C, то A > C]; 3) чтобы над любыми числами расширенной области можно было выполнять все действия, причем по возможности сохранились бы все законы действий.
Таким образом, на символ y/x, где y и x суть отрезки, мы всегда можем смотреть, как на число. Если это число мы назовем через k, то имеем
y/x = k или y = kx.
Мы сперва остановимся на первом из этих уравнений. Его можно понимать так:
Если даны два отрезка (напр., y и x), то всегда существует отношение этих отрезков, прямое и обратное (т. е. y/x и x/y), причем каждое отношение двух отрезков служит новою формою для выражения чисел: иногда оно выражает знакомы нам из курса арифметики рациональные числа, а иногда, если отрезки (y и x) несоизмеримы, выражает новое, иррациональное, число.
Все числа, и рациональные и иррациональные, обладают признаком равноправности: они выражаются в одной и той же форме, – в форме отношения двух отрезков.
169. О всяких двух данных рациональных числах мы можем узнать, равны ли эти числа, или одно из них больше другого. Теперь надо расширить это умение и научиться узнавать о всяких двух числах, будут ли они рациональны или иррациональны или одно из них рационально, а другое иррационально, равны ли эти числа или одно из них больше другого.
Так как каждое из тех чисел, с которыми мы имеем теперь дело, выражается отношением двух отрезков, то мы должны научиться применять понятия «больше», «меньше», «равно» к отношениям отрезков, подобно тому, как мы это умеем делать для рациональных чисел, для отрезков, для углов, для площадей, ограниченных прямыми линиями.
Для этой цели сперва рассмотрим ряд отношений с одинаковыми последующими членами, например:
Мы можем признать, что одно из этого ряда отношений равно, больше или меньше другого, смотря по тому, будет ли предыдущий член первого отношения равен, больше или меньше предыдущего члена второго, т. е
Ясно, что мы не впадаем здесь в противоречие с тем, как мы прилагаем понятия «равно», «больше» и «меньше» к рациональным числам: если отрезки y1 и y2 соизмеримы с x, то отношения y1/x и y2/x выражают рациональные числа, и ясно, что для них предыдущие условия справедливы.
170. Прежде чем перейти к случаю, когда у рассматриваемых отношений последующие члены различны, мы должны остановиться на следующем факте.
Если имеем два несоизмеримых отрезка AB и CD (чер. 185), то можно построить два новых отрезка, удовлетворяющих условиям:
1) Оба они соизмеримы, например, с отрезком CD и один из них меньше отрезка AB, а другой больше.
2) Разность между ними равна любой доле, сколь угодно малой, отрезка CD.
Выберем, например, пятую долю отрезка CD. Тогда, чтобы построить два указанных отрезка, поступаем следующим образом (Здесь мы пользуемся едва уловимою, благодаря своей очевидности, аксиомою Архимеда: если отрезок a больше отрезка b, то всегда можно найти такое целое число n, чтобы было nb < a, но (n + 1)b >a) : разделим отрезок CD на 5 равных частей и станем эту часть откладывать на отрезке AB, – пусть, например, она уложилась 8 раз с остатком KB, который, следовательно, < 1/5 CD; тогда получим отрезок AK, удовлетворяющий уравнению
Отложив от K еще 1/5 долю CD, получим отрезок AL, о котором напишем
Два полученных отрезка AK и AL и суть искомые:
1) Один из них AK < AB и другой AL >AB; оба они соизмеримы с CD, 2) разность между ними = 1/5 CD, т. е.
AL – AK = KL = 1/5 CD.
Отсюда мы получаем на основании п. 169: так как AB > AK, то AB/CD > AK/CD, но AK/CD = 8/5 [из равенства (1)], – следовательно, AB/CD > 8/5; так как AB < AL, то AB/CK < AL/CD, но AL/CD = 9/5 [из равенства (2)], – следовательно, AB/CD < 9/5.
Эти неравенства можно соединить вместе:
т. е. нам удалось установить, что отношение наших двух несоизмеримых отрезков AB и CD (или равное ему иррациональное число) заключается между числами 8/5 и 9/5. Эти числа разнятся между собою на 1/5 (9/5 – 8/5 = 1/5), а, следовательно, отношение AB/CD разнится от одного из них меньше, чем на 1/5. Поэтому говорят, что узнали отношение AB/CD с точностью до 1/5.
Если бы мы разделили сначала отрезок CD на 10 равных частей, то также нашли бы два отрезка, соизмеримых с CD, между которыми заключается отрезок AB, причем разность между ними равнялась бы 1/10 CD. Тогда получили бы, например,
Это неравенство можно было бы толковать так: нам удалось узнать отношение AB/CD с точностью до 1/10. Так же можно было бы узнать это отношение с точностью до 1/100, до 1/1000 и т. д.
Иногда даже пишут AB/CD = (прибл.) 17/10 или = (прибл.) 18/10.
171. Мы таким образом здесь научились находить рациональные числа, меньшие и большие отношении двух несоизмеримых отрезков. Легко теперь расширить это умение, а именно:
О всяком рациональном числе, целом или дробном, мы можем установить, равно ли оно отношению двух данных отрезков, или больше, или меньше его.
Пусть даны два отрезка AB и CD (чер. 185) и дано число p/q (например, 8/15). Мы можем разделить отрезок CD на q (на 15) равных частей и взять таких частей p (8); тогда получим отрезок = p/q CD (= 8/15 CD). Если этот отрезок окажется равным отрезку AB, то (п. 169) p/q = AB/CD (8/15 = AB/CD); если этот отрезок окажется меньше AB, то p/q < AB/CD (8/15 < AB/CD); если, наконец, этот отрезок окажется больше AB, то p/q >AB/CD (8/15 > AB/CD).
Добавление. Из предыдущего мы видим свойства, которыми должны обладать новые числа, введенные нами для выражения отношения двух несоизмеримых отрезков: 1) мы можем найти такое целое или дробное число, чтобы оно отличалось от нашего нового числа, выражающего отношение двух данных несоизмеримых отрезков, меньше чем на любую долю единицы (можно вычислять это новое число с любой точностью), но оно не может равняться никакому целому или дробному числу; 2) о всяком целом или дробном числе мы можем установить, больше ли оно или меньше нового числа, выражающего отношение двух данных несоизмеримых отрезков.
Можно, обобщая понятие о числе, не опираться на отрезки, но ввести иррациональные числа, как символы, которые указывали бы возможность как-либо обосновать два предыдущих свойства. Частным случаем иррациональных чисел являются те числа, которые вводятся в курс алгебры для того, чтобы считать символы √2, ∛4, √5 и т. п. за числа. Например, для √2 мы имеем, что он не может равняться ни целому, ни дробному числу, но
Эти равенства указывают возможность вычислить √2 с любою точностью. Кроме того, для всякого рационального числа можно установить, считать ли его больше или меньше √2, например, возьмем число 1,41423 и возведем его в квадрат – получим 2,0004465129, т. е. больше 2; поэтому 1,41423 > √2; возьмем еще число и возведем его в квадрат, – получим , т. е. меньше 2; поэтому < √2.
172. Можно приближенно вычислять отношение двух несоизмеримых отрезков и без уменья делить отрезок на равные части.
Пусть имеем 2 несоизмеримых отрезка AB и CD (чер. 186). Отложим меньший из них CD на AB, – пусть он отложится 3 раза с остатком KB; затем отложим KB на отрезке CD — пусть он уложится 1 раз с остатком LD; затем откладываем отрезок LD на KB, – пусть он уложится 3 раза с остатком MB. Этот процесс откладывания нового отрезка на предыдущем здесь никогда не кончится, так как отрезки AB и CD предполагаются несоизмеримыми. Но мы можем для приближенного вычисления отношения AB к CD принять, применяясь к чертежу 186, что остаток MB очень близок к отрезку LD и тогда счесть приблизительно, что LD укладывается на KB ровно 4 раза. Тогда имеем:
AB = 3CD + KB; CD = KB + LD; KB = (прибл.) 4LD.
CD = (прибл.) 5LD и AB = (прибл.) 19LD.
Отсюда мы можем заключить, что
AB = (прибл.) 19/5 CD или AB/CD = (прибл.) 19/5.
Для того, чтобы дать здесь ответ на существенный вопрос приближенного вычисления, каков здесь предел ошибки, надо знать теорию непрерывных дробей. Заметим лишь, что этот ответ ждать можно.
Возможно было бы, если остаток MB оказался мал, вовсе пренебречь им и принять, что KB = (прибл.) 3LD; тогда получили бы другое приближенное значение для AB/CD.
Если бы мы продолжили дальше процесс отложения: отложили MB на LD (например, 1 раз с остатком), новый остаток на MB и т. д., то, прервав где-либо этот процесс и приняв, что один из остатков равен приблизительно последующему остатку, повторенному целое число раз, мы получили бы другое приближенное значение для AB/CD, более точное.
Теория непрерывных дробей могла бы дать указание, сколь далеко надо продолжить этот процесс, чтобы получить приближенное значение для нашего отношения с точностью, например, до 1/100.
173. Перейдем теперь к рассмотрению вопроса, как применять понятия «больше», «меньше» и «равно» к двум отношениям с различными последующими членами. Иногда удается воспользоваться арифметическими соображениями. Например, если мы получили AB/CD = 4/5 и A’B’/C’D’ = 4/5 (где AB, CD, A’B’ и C’D’ суть отрезки), то ясно, что AB/CD = A’B’/C’D’; также, если удалось узнать, что AB/CD = 2/3, а A’B’/C’D’ = 4/5, то, принимая во внимание, что 4/5 > 2/3 (4/5 = 12/15, 2/3 = 10/15), мы имеем AB/CD < A'B'/C'D' или A'B'/C'D' >AB/CD.
Но случай, когда возможно воспользоваться арифметикою, редки, и нам необходимо разобрать вопрос о равенстве или неравенстве двух отношений в предположении, что мы не знаем, какому именно числу равно каждое из них (а если AB и CD несоизмеримы, то символ AB/CD мы не всегда даже в состоянии заменить другим символом, выражающим то же число в арифметической форме).
Для выяснения вопроса обратимся сначала к арифметике. Пусть даны два числа 2/9 и 5/24; найти число большее одного из них и меньшее другого.
Для этого приведем наши дроби к общему знаменателю:
2/9 = 16/72 и 5/24 = 15/72.
Мы видим, что требуемое число нельзя найти в виде дроби со знаменателем 72. Поэтому, обращаясь к более мелким долям, получим: 2/9 = 32/144 и 5/24 = 30/144. Отсюда находим искомое число 31/144.
2/9 = 48/216 и 5/24 = 45/216
то вот еще искомые числа: 46/216 и 47/216.
Раздробляя 2/9 и 5/24 в еще более мелкие доли, найдем, что искомых чисел бесконечно много. Возможность нахождения таких чисел имеет причиною, что 2/9 и 5/24 не равны (5/24 < 2/9). Если же нам даны два равных числа, хотя бы и в различной форме, напр., 5/8 и 10/16, то найти указанные числа невозможно.
Теперь нам числа даются в особой форме: в виде отношений отрезков. Мы не умеем изменить эту форму так, чтобы отношение двух отрезков оставалось равным самому себе, но чтобы последующий член сделался одинаковым с последующим членом другого отношения (так мы в арифметике поступаем с дробями с целью узнать, какая из них больше), но зато мы умеем (п. 171) всякое рациональное число сравнивать с отношением двух данных отрезков. Поэтому мы можем те заключения, какие вывели из решения предыдущей арифметической задачи, применить к сравнению двух отношений отрезков, независимо от того, соизмеримы ли или нет эти отрезки:
Два отношения (двух пар отрезков) равны между собою, если нельзя найти рационального числа так, чтобы оно было больше одного из этих отношений и меньше другого.
Если же, наоборот, удается найти такое рациональное число p, чтобы p было больше AB/CD, но чтобы p < A'B'/C'D', то наши отношения AB/CD и A'B'/C'D' не равны, а именно A'B'/C'D' >AB/CD.
174. Мы можем простыми геометрическими построениями получить 2 пары отрезков, отношения которых равны между собою. Построим ∠A (чер. 187) и на одной его стороне отложим равные отрезки: AB = BC = CD, затем построим BB’ || CC’ || DD’; тогда, согласно п. 111, получим AB’ = B’C’ = C’D’. Теперь нетрудно составить несколько пар равных отношении: AB/BD = A’B’/B’D’ (каждое отношение = ½; общая мера отрезков AB и BD есть AB, а отрезков AB’ и B’D’ есть AB’) AC/AD = AC’/AD’ (каждое отношение = 2/3; общая мера для AC и AD есть также AB, а для AC’ и AD’ — также AB’) и т. п.
175. Можно обобщить предыдущий пример: построим ∠A (чер. 188) и пересечем его произвольно, не откладывая каких-либо равных отрезков, параллельными BD, CE, MN. Не окажется ли, что и здесь отношение каких-либо двух отрезков на одной стороне угла равным отношению соответствующих двух отрезков на другой стороне? Рассмотрим, напр., отношения BC/AB и DE/AD.
Выберем самое большое число со знаменателем n, где n любое целое число, так, чтобы оно было меньше отношения BC/AB. Для этого разделим отрезок AB на n равных частей и станем эти части откладывать на отрезке BC; допустим, что их уложится m с остатком KC. Тогда имеем: BK < BC и, следовательно, BK/AB < BC/AB, но BK/AB = m/n; следовательно, m/n < BC/AB.
Построив ряд прямых параллельных BD и CE чрез концы отложенных n-ых долей AB, увидим, что этими прямыми отрезок AD разделится на n равных частей (п. 111) и таких частей на отрезке DE уложится m с остатком LE. Тогда DL < DE, и следовательно, DL/AD < DE/AD, но DL/AD = m/n. Отсюда заключаем, что число m/n меньше также и отношения DE к AD, т. е.
m/n < DE/AD.
Отсюда мы видим, что всякое число, меньшее одного из наших отношений, должно быть меньше другого. Мы говорим «всякое число» потому, что число n мы можем выбрать каким угодно, а числитель дроби m/n мы брали так, чтобы получилась наибольшая дробь со знаменателем n, меньшая отношения BC/AB.
[ Точно так же можно увидать, что всякое число, большее первого отношения, должно быть больше и второго, для этого надо рассмотреть наименьшее число со знаменателем n, большее отношения BC/AB, а для этого надо от точки K отложить одну n-ую долю AB, до точки K’. Тогда BK’ > BC и, следовательно, BK’/AB > BC/AB’, но BK’/AB = (m+1)/n, следовательно,
Построив чрез K’ прямую K’L’ || CE, найдем на другой стороне угла точку L’ так, что DL’ > DE и, следов., DL’/AD > DE/AD, но DL’/AD = (m + 1)/n. Поэтому
Итак, даже наименьшая из дробей со знаменателем n, которая больше отношения BC/AB, оказывается больше, чем и отношение DE/AD. ]
Отсюда общее заключение: нельзя найти такого числа, которое было бы меньше одного из отношений BC/AB и DE/AD и в то же время больше другого из них; следовательно, признак равенства двух отношений (п. 173) оправдывается, т. е.
Если оказалось бы, что n-ая доля AB уложилась на BC m раз без остатка, то тогда BC/AB = m/n и при помощи параллельных увидим, что и DE/AD = m/n, т. е. и здесь оправдалось бы вышенаписанное равенство.
Мы могли бы взять также на первой стороне отрезок AC и на другой — ему соответствующий отрезок AE.
Тогда, рассматривая отношения AC/AB и AE/AD, мы увидали бы, что наибольшее число со знаменателем n, которое меньше отношения AC/AB, есть (m + n)/n и оно, как легко видеть, меньше также и отношения AE/AD. [ Точно так же наименьшее число (m + n + 1)/n со знаменателем n, больше первого отношения, оказывается больше и второго.] Отсюда заключаем, что
Так же точно можно выяснить и следующие равенства:
AB/BC = AD/DE, AC/BC = AE/DE, AB/AC = AD/AE, BC/AC = DE/AE.
Для выяснения этих равенств надо поступать так же, как выше, но делить на n равных частей не отрезок AB, но BC и затем AC. Каждое из полученных равенств называется пропорциею.
Если построить еще MN || CE, то легко распространить тем же способом полученный результат и на новые отрезки. Тогда, напр., получим BC/CM = DE/EN и т. д.
Если стороны угла пересечь параллельными, то отношение двух каких-либо отрезков на одной стороне угла равно отношению двух соответствующих отрезков на другой стороне угла.
То же свойство выражают короче:
Если стороны угла пересечь параллельными, то отрезки на одной стороне угла пропорциональны соответствующим отрезкам на другой.
Слово «пропорциональны» надо понимать в том смысле, что отношение всякой пары отрезков на одной стороне равно отношению соответствующей пары отрезков на другой.
Это определение пропорциональности совпадает с тем, которое известно из арифметики. В самом деле, возьмем одну из наших пропорций, напр.,
Отсюда легко увидать: 1) если AB > BC, то и AD > DE, т. е. с увеличением одной величины — отрезки на каждой прямой можно рассматривать, как величину — другая также увеличивается: 2) если, напр., AB = 3BC, то AB/BC = 3 и, следовательно, AD/DE = 3, откуда AD = 3DE, т. е., если одна величина увеличивается в несколько раз, то и другая увеличивается во столько же раз.
176. Пусть теперь ∠A (чер. 189) пересечен не параллельными прямыми BC и DE. Сравним, напр., отношения AD/AB и AE/AC. Построим DF || BC и разделим AC на такие равные части, чтобы каждая из них была меньше отрезка FE, и станем эти части откладывать на отрезке CE. Тогда конец хотя бы одной такой части попадет куда-либо между точками F и E (ибо каждая часть < FE), – пусть K есть конец одной из таких частей. Положим, что пришлось AC разделить на n равных частей и что таких частей от A до K уложилось m. Тогда
AK/AC = дроби m/n, но AK/AC < AE/AC
(ибо последующие члены одинаковы, а AK < AE), следовательно,
Построив через концы отложенных частей ряд параллельных (на чертеже даны пунктиром), последнею из которых есть KK’, мы увидим, что точка K’ придется вне отрезка AD, что AB разделится на n равных частей и что таких частей на AK’ уложится m. Поэтому
AK’/AB = дроби m/n, но AK’/AB > AD/AB
(ибо последующие члены одинаковы, а AK’ > AD), следовательно,
Мы видим, что здесь удалось найти дробь, которая меньше одного из отношений и больше другого; поэтому наши отношения не равны, а именно AD/AB < AE/AC.
Добавление. При нашем способе построения отрезков и при том порядке, в каком мы их берем для составления отношений, то из двух отношений оказывается меньше, члены которого расположены на стороне угла, более близкой к точке пересечения непараллельных BC и DE.
Если рассматривать отношения, обратные предыдущим, т. е. AB/AD и AC/AE, то имели бы, что AB/AD > AC/AE, т. е. то отношение было бы больше, члены которого располагаются на прямой, более близкой к точке пересечения прямых BC и DE.
177. Предыдущими признаками можно пользоваться для узнавания, равно ли отношение одной пары отрезков отношению другой пары. Пусть, напр., имеем 4 отрезка a, b, c и d (чер. 190). Узнаем, равно ли отношение отрезка a к отрезку b (т. е. a/b) отношению отрезков c и d (т. е. c/d). Для этой цели построим какой-либо ∠O и на его сторонах построим отрезки OA = a, OB = b, OC = c и OD = d. Построим затем прямые AC и BD: если AC || BD, то a/b = c/d, если AC не || BD, то a/b не равно c/d (если, например, как то приблизительно имеет место на чертеже, прямые AC и BD пересекаются в какой-либо точке, более близкой к OD, чем к OB, то c/d > a/b).
Добавление. Пусть оказалось, что AC || BD. Тогда a/b = c/d или b/a = d/c или, на основании п. 175, (b – a)/b = (d – c)/d (т. е. AB/OB = CD/OD) и т. п.
178. Если 4 данных отрезка a, b, c и d таковы, что, напр., a/b = c/d, то эти 4 отрезка составляют пропорцию, или мы имеем 4 пропорциональных отрезка. Пропорции, членами которых являются отрезки, обладают свойствами, сходными со свойствами пропорций, членами которых служат числа. Покажем, напр., что в пропорции
где a, b, c и d суть отрезки, можно переставлять средние члены, т. е., что из предыдущей пропорции вытекает другая, а именно
Для этого на сторонах угла O (чер. 191) отложим члены пропорции (1): OA = a, OB = b, OC = c и OD = d и построим прямые AC и BD.
Так как пропорция (1) справедлива, то AC || BD. Отложим еще: OC’ = OC = c, OD’ = OD = d, OB’ = OB = b, и построим прямые AB’, DC’, D’B’ и D’C.
Тогда будем иметь ∠OCA = ∠ODB (ибо AC || BD) = ∠OD’B’ (ибо ∆OBD = ∆OB’D’ — у этих треугольников OB’ = OB, OD’ = OD и ∠O общий). Отсюда следует, что ∠ACB’ + ∠AD’B’ = 2d (ибо ∠AD’B’ = ∠OCA), т. е. около четырехугольника ACB’D’ можно описать круг (этот круг на чертеже не дан). Поэтому углы CAB’ и CD’B’ суть углы, вписанные в этот круг и опирающиеся на одну и ту же дугу CB’, откуда заключаем, что ∠CA’ = ∠CD’B’, но ∠CD’B’ = ∠C’DB, ибо ∆CD’B’ = ∆C’DB (из равенства ∆OBD и ∆OB’D’ вытекает, что BD = B’D’; также из равенства ∆OCD’ и ∆OC’D вытекает, что DC’ = D’C и, наконец, BC’ = B’C, ибо BC’ = OB – OC’, а B’C = OB’ – OC), следовательно, ∠CAB’ = ∠C’DB. Теперь ∠CB’A является внутренним углом ∆CAB’, а ∠OCA есть внешний угол для этого же треугольника.
Поэтому ∠CB’A или ∠OB’A = ∠OCA – ∠CAB’.
Далее непосредственно видим ∠ODC’ = ∠ODB – ∠C’DB.
Но мы видели, что ∠OCA = ∠ODB и ∠CAB’ = ∠C’DB, откуда следует, что ∠OB’A = ∠ODC’, т. е., что AB’ || C’D.
Поэтому имеем право написать пропорцию
OA/OC’ = OB’/OD или a/c = b/d,
что и доказывает возможность переставлять средние члены пропорции. (Это доказательство заимствовано из D. Hilbert. Grundlagen der Geometrie.)
179. Чтобы лучше усвоить мысль, выраженную в п. 173, рассмотрим здесь еще пример.
Пусть (чер. 192) через точку A построены: AB ⊥ BD и наклонные AC и AD. Сравним отношение наклонных с отношением их проекций, т. е. AC/AD с BC/BD. Построим прямую CE || BA; затем разделим AD (большую наклонную) на столько равных частей, чтобы каждая часть была меньше разности между AC и AE (AC > AE, что видно из ∆ACE, где ∠E тупой). Называя это число равных частей, на которые делим AD, через n, имеем:
Поэтому, если на AC укладывается таких частей m с остатком, то на AE их уложится по крайней мере на одну меньше, т. е. m таких частей составят отрезок больший, чем AE.
Разделив AD на указанные равные части, мы найдем отрезок AK, больший чем AE и равный m/n AD. Построив через точки деления ряд параллельных перпендикуляру AB, найдем, что BD разделится на n равных частей и получим отрезок BL = m/n BD, причем BL > BC. Итак, имеем:
BL = m/n BD, или BL/BD = m/n
Согласно условию на наклонной AC тех частей, на которые разделена AD, укладывается m с остатком, т. е.
AC > m/n AD или AC/AD > m/n или дробь m/n < AC/AD.
Итак, нам удалось найти такое число m/n, что оно больше отношения проекций (BC/BD), и меньше отношения наклонных (AC/AD), откуда заключаем, что
(Отношение наклонных больше отношения их проекций).
Даны два отрезка, ЕК и РМ, причем ЕК_|_PM(перпендикулярен)
E (-3;1) K (1;4) M (2;1), P (-4;a) 1.) Найдите острый угол между РЕ и ЕК 2.) Вычислите: Вектор ЕК * Вектор МК — Вектор КЕ * Вектор КР.
Голосование за лучший ответ
координату а пожалуйста
Королёва НинаПрофи (697) 10 лет назад
координата а, прям и есть а, т. е просто буква
Георгий СтаростинУченик (133) 9 лет назад
ее то как раз таки и надо найти
Егор МаврицинУченик (121) 7 лет назад
Похожие вопросы
Ваш браузер устарел
Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.
Как сравнить длины отрезков?
Сравнить 2 отрезка на плоскости — это типичная задача по геометрии для учеников 7 класса. Существует несколько разных методов выполнения данного сравнения, и мы подробно расскажем о каждом из них.
Подобного рода задачи выполняются элементарно и являются основой для изучения дальнейшего материала. Стоит один раз запомнить этот несложный процесс, и в дальнейшем уже не возникнет никаких трудностей с аналогичными заданиями.
Метод наложения
Одной из простейших геометрических фигур является отрезок . Для того чтобы сравнивать отрезки, можно использовать два способа:
- Метод наложения.
- Измерение длин.
Пусть нам даны два отрезка AB и СD:
Совместим начало отрезка AB и СD (точки A и С).
Затем повернем отрезок СD так, чтобы он совпал с отрезком AB.
Мы видим, что отрезок СD составляет часть отрезка AB, следовательно, мы можем сделать вывод, что отрезок AB больше отрезка СD.
Если точка делит отрезок на равные отрезки, то эту точку называют серединой отрезка.
MK = KV, K — середина отрезка.
Рассмотрим еще одну пару отрезков HG и ST.
Совместим начало отрезка HG и ST.
Затем повернем отрезок STтак, чтобы он совпал с отрезком HG.
В данном случае мы видим, что совпали не только точки S и H (начала отрезков HG и ST), но и точки G и T (концы отрезков HG и ST), то есть отрезки совпадают, а нам известно, что две геометрические фигуры называются равными, если их можно совместить наложением.
Вывод:
Измерение длин:
Для измерения отрезков, необходимо наложить на него единичные отрезки, и длиннее будет считаться тот отрезок, которому соответствует большее число единичных отрезков.
Пример: Пусть у нас есть единичный отрезок. Рассмотрим три отрезка QL, FJ и PO.
Наложим единичный отрезок на данные.
Посчитаем, какое количество единичных отрезков накладывается на каждый из отрезков, получаем: QL = 5 ед.от., FJ = 3 ед.от., PO = 5 ед. от.
Сравним отрезки: QL > FJ (т.к. 5 > 3), FJ < PO (т.к. 3 < 5), QL = PO (т.к. 5 = 5).
- Если при наложении отрезков оба их конца совмещаются, значит отрезки равны.
- Если при измерении отрезков их длины равны, то отрезки равны.
Как сравнить 2 отрезка: способы решения задачи
Что такое отрезок
Прежде чем рассказать, как сравнить 2 отрезка, давайте разберем, что такое отрезок на плоскости.
Читайте также: Что такое автоматизированные системы управления?
Определение из учебника по геометрии гласит, что отрезок — это часть прямой, которая с двух сторон ограничивается двумя точками.
Если рассматривать одну прямую, отрезком будет считаться множество, которое состоит из двух разных точек этой прямой (собственно, концов отрезка), а также остального множества из всех точек, которые располагаются между ними (так называемых внутренних точек).
Сравнение двух отрезков
Итак, в вопросе о том, как сравнить 2 отрезка, можно выделить следующие методы:
- Наложение. Для того чтобы выполнить сравнение двух отрезков, нужно выполнить наложение одного из них на другой. Соответственно, тот отрезок, который будет содержать внутри себя второй отрезок целиком, больше. Если концы этих отрезков совпали — значит, их длины равны.
- Второй способ, как сравнить 2 отрезка в геометрии — это выяснить, на какое количество единиц отличается их длина. Для этого нужно при помощи линейки с одинаковыми значениями провести измерение сначала одного отрезка, затем другого, и из первого результата вычесть второй.
В том случае, если разность составит положительное число, значит, первый отрезок длиннее второго на соответствующее количество единиц. Если в результате получено нулевое значение — отрезки равны. А если в ответе отрицательное число, следовательно, второй отрезок длиннее первого.
Вывод
Итак, мы выяснили, как сравнить 2 отрезка. Первый способ указывает только на то, какой из них будет длиннее, а какой — короче, а второй показывает числовое значение разницы в длине.
Прямая и отрезок, измерение и сравнение отрезков
Понятие прямой, также как и понятие точки является основными понятиями геометрии. Как известно основные понятия не определяется. Это не является и исключением для понятия прямой. Поэтому рассмотрим суть этого понятия через его построение.
Возьмем линейку и, не отрывая карандаша, проведем линию произвольной длины.
Полученную линию мы и будем называть прямой. Однако тут необходимо отметить, что это не вся прямая, а только её часть. Всю же прямую построить не имеется возможным, она является бесконечной на обоих своих концах.
Прямые будем обозначать маленькой латинской буквой, либо двумя её точками в круглых скобках.
Читайте также: Для чего вводится система отсчёта в физике?
Понятия прямой и точки связаны тремя аксиомами геометрии:
- Аксиома 1: Для каждой произвольной прямой существует как минимум две точки, которые на ней лежат.
- Аксиома 2: Можно найти как минимум три точки, которые не будут лежать на одной и той же прямой.
- Аксиома 3: Через $2$ произвольные точки всегда проходит прямая, причем эта прямая единственна.
Для двух прямых актуально их взаимное расположение. Возможны три случая:
- Две прямые совпадают. В этом случае каждая точка одной будет также и точкой другой прямой.
- Две прямые пересекаются. В этом случае только какая-то одна точка из одной прямой будет также принадлежать и другой прямой.
- Две прямые параллельны. В этом случае у каждой из этих прямых свой набор различных друг от друга точек.
В этой статье мы не будем подробно останавливаться на этих понятиях.
Отрезок
Пусть нам дана произвольная прямая и две точки, принадлежащие ей. Тогда отрезком будет называться часть прямой, которая ограничена двумя ее произвольными различными точками. Точки, которыми ограничен отрезок в рамках определения 1 называются концами этого отрезка.
Отрезки будем обозначать двумя её точками концов в квадратных скобках.
Сравнение отрезков
Рассмотрим два произвольных отрезка. Очевидно, что они могут быть либо равными, либо неравными. Чтобы разобраться в этом, нам нужна следующая аксиома геометрии.
Аксиома 4: Если оба конца двух различных отрезков совпадут при их наложении, то такие отрезки будут равными.
Итак, для сравнения выбранных нами отрезков (обозначим их отрезок 1 и отрезок 2) наложим конец отрезка 1 на конец отрезка 2, так, чтобы, отрезки оставались по одну сторону от этих концов. После такого наложения возможны два следующих случая:
- Вторые концы этих отрезков также совпадут. В таком случае по аксиоме 5 мы получим, что такие отрезки будут равны друг другу.
- Вторые корцы не совпадут. Здесь, без ограничения общности, будем считать, что конец отрезка 1 будет принадлежать отрезку 2. Тогда здесь мы говорим, что данные отрезки не равны, причем отрезок 1 короче отрезка 2.
Как сравнить длины отрезков: наложение и измерение, объяснение и примеры
Отрезок — часть прямой, ограниченная двумя точками, кратчайшее расстояние между этими точками. Существует несколько способов сравнения геометрических фигур, выбор такого способа зачастую зависит не только от условия задачи, но и от возможностей. Как же сравнивать отрезки, расскажем в этой статье.
Читайте также: Какая роль интернета — всемирной паутины?
Способы сравнения двух отрезков
В геометрии две фигуры, имеющие одинаковый размер и форму, называются равными. Сравнение фигур дает возможность сказать, одинаковы ли они. Одним из способов является наложение. Если фигуры удается совместить наложением, они считаются равными.
Сравнить фигуры — значит, определить, которая из них длиннее или короче. Ответ должен быть определенным, нельзя сказать, что один отрезок длиннее или равен второму. В математике такой ответ неправилен, его можно приравнять к отсутствию ответа.
Записывают результат сравнения с помощью знаков больше, меньше и знака равенство (>; АБ.
Это интересно: как разложить на множители квадратный трехчлен?
Сравнивать фигуры можно разными способами, выбор которых зависит от возможностей или условий:
- визуальный способ;
- измерительный;
- сравнение наложением;
- сравнение в координатной сетке.
Лучше всего, если они различаются по длине визуально, и, просто посмотрев на них, вы можете сказать, который длиннее. Но так бывает не всегда.
Измерение длины
Самый простой способ — измерение. Для этого можно использовать линейку, просто измерив длину отрезка, мы поймем, который из них длиннее. Если нет линейки, но они начерчены на листе в клетку, для измерения их длин можно посчитать клетки. В одном сантиметре две клетки. Это метод сравнения измерением длин, но есть еще метод сравнения наложением.
Наложение друг на друга
Как происходит совмещение АБ и ВГ:
- Нужно конец, А одного из них совместить с концом В другого, если совпадают и другие концы этих отрезков — Б и Г, значит, они равны, что записывается с помощью знака равно.
- Если нет, значит, один из них длиннее другого, и записывается это также с помощью математических знаков больше или меньше (> или √ 73, значит, Da > Db.
- Также можно сравнить отрезки, находящиеся в трехмерной системе координат, надо учитывать не две, а три координаты каждого из них.