Перевод дробей
Если вам необходимо перевести десятичную дробь в обыкновенную или наоборот воспользуйтесь нашим онлайн калькулятором:
Перевод обыкновенной дроби в десятичную
Округление ответа:
Перевод десятичной дроби в обыкновенную
Просто заполните необходимые поля и получите ответ и подробное решение.
Теория
Как перевести обыкновенную дробь в десятичную
Чтобы перевести обыкновенную дробь в десятичную дробь нужно числитель разделить на знаменатель и к полученному числу прибавить целую часть (если она есть).
Формула
a b c = a + b : c
Пример
Для примера преобразуем следующую дробь:
5 1 2 = 5 + 1 : 2 = 5 + 0.5 = 5.5
Как перевести десятичную дробь в обыкновенную
Чтобы перевести десятичную дробь в обыкновенную дробь необходимо все цифры после запятой поместить в числитель, а знаменатель будет состоять из единицы и такого количества нулей, сколько цифр в числителе. При этом целая часть числа остаётся неизменной, а полученную дробь нужно сократить, если это возможно.
Примеры
Для примера переведём 5.5 в обыкновенную дробь, а точнее в смешанное число:
5.5 = 5 5 10 = 5 5 : 5 10 : 5 = 5 1 2
Ещё пара примеров:
0.06 = 6 100 = 6 : 2 100 : 2 = 3 50
Математика
Десятичные числа, такие как 0,2; 1,05; 3,017 и т.п. как слышатся, так и пишутся. Ноль целых две десятых, получаем дробь . Одна целая пять сотых, получаем дробь . Три целых семнадцать тысячных, получаем дробь . Цифры до запятой в десятичном числе — это целая часть дроби. Цифра после запятой — числитель будущей дроби. Если после запятой однозначное число — в знаменателе будет 10, если двухзначное — 100, трехзначное — 1000 и т.д. Некоторые полученные дроби можно сократить. В наших примерах
Преобразование дроби в десятичное число
Это обратное предыдущему преобразованию. Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, или
Если дробь, например . В этом случае необходимо воспользоваться основным свойством дроби и преобразовать знаменатель до 10 или 100, или 1000 . В нашем примере, если домножить числитель и знаменатель на 4, получим дробь , которую возможно записать в виде десятичного числа 0,12.
Некоторые дроби проще разделить, чем преобразовать знаменатель. Например,
Некоторые дроби невозможно преобразовать в десятичные числа!
Например,
Преобразование смешанной дроби в неправильную
Смешанную дробь, например , легко преобразовать в неправильную. Для этого необходимо целую часть умножить на знаменатель (низ) и сложить с числителем (верх), знаменатель (низ) оставить без изменения. То есть
При преобразовании смешанной дроби в неправильную, можно вспомнить, что Можно использовать сложение дробей
Преобразование неправильной дроби в смешанную (выделение целой части)
Неправильную дробь можно перевести в смешанную, выделив целую часть. Рассмотрим пример, . Определяем, сколько целых раз «3» вмещается в «23». Или 23 делим на 3 на калькуляторе, целое число до запятой — искомое. Это «7». Далее определяем числитель уже будущей дроби: полученную «7» умножаем на знаменатель «3» и из числителя «23» вычитаем полученное. Как бы находим то лишнее, что остается от числителя «23», если изъять максимальное количество «3». Знаменатель оставляем без изменения. Все сделано, записываем результат
Преобразование периодической дроби в обыкновенную
Из числа, стоящего до второго периода, вычесть число, стоящее до первого периода, и сделать эту разность числителем; в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и после девяток дописать столько нулей, сколько цифр между запятой и первым периодом.
Онлайн калькулятор дробей. Вычисления с дробями. Сложение, вычитание, умножение и деление дробей.
Используя этот онлайн калькулятор с дробями, вы сможете сложить, вычесть, умножить, разделить или возвести в степень обыкновенные дроби, смешанные числа (дроби с целой частью), десятичные дроби и целые числа, соответственно найти их сумму, разность, произведение или частное.
Воспользовавшись онлайн калькулятором дробей, вы получите детальное пошаговое решение вашего примера, которое позволит понять алгоритм решения задач с дробями и закрепить пройденный на уроках материал.
Калькулятор дробей
| | 1 | 2 | 3 | ÷ | |
( | ) | 4 | 5 | 6 | × | С |
a 2 | 7 | 8 | 9 | — | | |
a b | . | 0 | + |
Инструкция использования калькулятора дробей
Для решения вашей задачи выполните следующие действия:
- введите ваш пример в калькулятор;
- нажмите кнопку для выполнения вычислений.
Ввод данных в калькулятор дробей
В калькулятор дробей можно вводить: целые числа, десятичные дроби, обыкновенные дроби и смешанные числа.
Целые числа. Для ввода целых чисел используйте цифровые клавиши калькулятора или цифровые клавиши вашего компьютера. 1 2 3 4 5 6 7 8 9 0
Десятичные дроби. Десятичные дроби вводятся также как и целые числа, в качестве десятичного разделителя рекомендуется использовать точку .
Обыкновенные дроби: Для ввода обыкновенной дроби нажмите клавишу на клавиатуре калькулятора — после чего введите значения числителя и знаменателя дроби используя числовые клавиши.
Смешанные числа: Используя числовые клавиши введите целую часть смешанной дроби, нажмите клавишу дроби на клавиатуре калькулятора — после чего введите значения числителя и знаменателя дроби используя числовые клавиши.
Отрицательные числа: Перед числом поставьте знак минус — , не забывайте брать отрицательные числа в скобки ( ) .
Возведение в степень: Для возведения числа в степень введите число нажмите клавишу a b , затем введите значение степени. (На компьютере степень можно ввести нажав клавишу «^». Например, для ввода 4 3 нужно набрать 4^3)
N.B. Калькулятор поддерживает только целые степени!
N.B. Буквенные выражения, операции извлечения корня калькулятор не поддерживает!
Дополнительные возможности калькулятора дробей
- С — полностью очистить поле ввода.
- — удалить один символ.
- для перемещения между полями калькулятора.
Как проводить действия с дробями
В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.
Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.
Количество просмотров этой статьи: 71 444.
В этой статье:
Действия с дробями не такие сложные, как кажутся, особенно если знать, что делать. Начните с изучения терминологии и основ, а затем перейдите к сложению, вычитанию, умножению и делению дробей. Как только вы поймете, что такое дроби и как с ними работать, вы будете быстро решать выражения с дробями.
Метод 1 из 2:
Основные понятия
- Например, дана дробь 3/5. Здесь 3 — это числитель (то есть даны 3 части целого), а 5 — это знаменатель (то есть целое разделено на 5 частей). Другой пример: дробь 7/8. Здесь 7 — числитель, а 8 — знаменатель.
- Например, чтобы преобразовать 7 в дробь, запишите 7/1.
- Например, дана дробь 15/45. Здесь НОД = 15, поскольку и 15, и 45 делятся на 15. Разделите: 15/15 = 1 — это новый числитель; 45/15 = 3 — это новый знаменатель. Таким образом, дробь 15/45 упрощается до 1/3.
- Например, дано смешанное число 1 2/3. Умножьте 3 на 1 и получите 3. Прибавьте 3 к 2 и получите 5 (это новый числитель). Таким образом, 1 2/3 = 5/3.
Совет: преобразуйте смешанные числа в неправильные дроби, если вы их умножаете или делите.
- Например, дана неправильная дробь 17/4. Разделите: 17 ÷ 4 = 4 ост. 1 (чтобы найти остаток, умножьте 4 * 4 = 16, а затем вычтите 17 – 16 = 1). Таким образом, 17/4 = 4 1/4.
Метод 2 из 2:
Операции с дробями
- Например, дано выражение 5/9 + 1/9. Здесь просто сложите числители 5 + 1 = 6. Таким образом, 5/9 + 1/9 = 6/9 = 2/3.
- Например, дано выражение 6/8 — 2/8. Здесь вычтите 6 – 2 = 4. Таким образом, 6/8 — 2/8 = 4/8 = 1/2.
- Например, дано выражение 1/2 + 2/3. Начните с нахождения общего кратного. В нашем примере общее кратное равно 6, потому что 6 делится и на 2, и на 3. Чтобы привести дробь 1/2 к знаменателю 6, умножьте числитель и знаменатель на 3: 1 x 3 = 3 и 2 х 3 = 6; получится новая дробь 3/6. Чтобы привести дробь 2/3 к знаменателю 6, умножьте числитель и знаменатель на 2: 2 x 2 = 4 и 3 x 2 = 6; получится новая дробь 4/6. Теперь сложите числители: 3/6 + 4/6 = 7/6. Поскольку это неправильная дробь, ее можно преобразовать в смешанное число 1 1/6.
- Другой пример: 7/10 — 1/5. Здесь общим кратным является 10, потому что 10 делится на 10 и на 5. Чтобы привести дробь 1/5 к знаменателю 10, умножьте числитель и знаменатель на 2: 1 x 2 = 2 и 5 x 2 = 10; получится новая дробь 2/10. Обратите внимание, что дробь 7/10 уже имеет общий знаменатель. Теперь вычтите числители: 7/10 – 2/10 = 5/10 = 1/2.
- Например, дано выражение 2/3 * 7/8. Перемножьте числители: 2 * 7 = 14. Затем перемножьте знаменатели: 3 * 8 = 24. Таким образом, 2/3 * 7/8 = 14/24 = 7/12 (если разделить числитель и знаменатель на 2).
- Например, дано выражение 1/2 ÷ 1/6. Переверните дробь 1/6 и получите 6/1. Теперь перемножьте: 1 x 6 = 6 (это новый числитель) и 2 x 1 = 2 (это новый знаменатель). Итак, 1/2 ÷ 1/6 = 6/2 = 3.
- Внимательно прочитайте задачу (по крайней мере дважды), чтобы понять, что в ней нужно найти.
- Спросите у учителя, нужно ли преобразовывать неправильные дроби в смешанные числа и/или упрощать дроби.
- Чтобы найти обратное значение целого числа, запишите это число под 1. Например, 5 превратится в 1/5.
- Знаменателя, который равен нулю, не бывает, потому что на 0 делить нельзя.
Дополнительные статьи
найти квадратный корень числа вручную
найти среднее значение, моду и медиану
вычислить общее сопротивление цепи
вычесть дробь из целого числа
решать кубические уравнения
извлечь квадратный корень без калькулятора
найти множество значений функции
переводить из двоичной системы в десятичную
перевести миллилитры в граммы
умножить в столбик
вычислить вероятность
найти область определения и область значений функции
разделить целое число на десятичную дробь
умножать двузначные числа
- ↑https://medium.com/i-math/the-no-nonsense-straightforward-da76a4849ec
- ↑https://medium.com/i-math/the-no-nonsense-straightforward-da76a4849ec
- ↑http://www.math.com/school/subject1/lessons/S1U4L2GL.html
- ↑https://sciencing.com/solve-math-problems-fractions-7964895.html
- ↑https://sciencing.com/solve-math-problems-fractions-7964895.html
- ↑https://www.bbc.co.uk/bitesize/articles/z9n4k7h
- ↑https://www.bbc.co.uk/bitesize/articles/z9n4k7h
- ↑https://www.bbc.co.uk/bitesize/articles/z9n4k7h
- ↑http://www.math.com/school/subject1/lessons/S1U4L4GL.html
Об этой статье
Штатный автор wikiHow
В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.
Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества. Количество просмотров этой статьи: 71 444.