Как установить блок питания в системный блок снизу
Перейти к содержимому

Как установить блок питания в системный блок снизу

  • автор:

Как правильно расположить блок питания вентилятором вверх или вниз?

 Как установить БП вентилятором вверх или вниз?

Блок, или источник питания. Как расположить вентилятор вверх или вниз? Это тема больших споров, а также один из самых часто задаваемых вопросов многих пользователей при создании своего нового компьютера. Новички в сборке пк или даже некоторые опытные пользователи часто путаются в том, как им следует держать вентиляторы в положении вверх или вниз. Итак, раскроем завесу тайны и очистим все ваши сомнения относительно нее, принимая во внимание все возможные факторы и условия.

Блок питания является одним из наиболее важных компонентов ПК, поскольку он считается единственным компонентом, который обеспечивает питание всех внутренних компонентов вашего компьютера, включая процессор, материнскую плату, жесткий диск, SSD, видеркарту, вентиляторы корпуса и т.д. нагревается во время нагрузки и для этого он оснащен вентилятором для охлаждения. Да, есть несколько безвентиляторных блоков питания, но они довольно дорогие и не так популярны.

Почти все современные стандартные блоки питания ATX поставляются с 120-мм вентилятором, который устанавливается сверху или снизу. Этот кулер работает как впускной вентилятор для блока питания, который всасывает воздух и подает его на компоненты внутри источника питания, откуда он выходит из задних отверстий блока питания. Вы можете видеть воздушный поток блока питания на диаграмме, приведенной далее.

блок питания с вытяжным вентилятором

Некоторые старые и более дешевые блоки питания поставляются с 80-мм вентилятором сзади. Здесь задний 80-мм кулер работает как вытяжной вентилятор для устройства питания.

Очень важно правильно установить блок питания или ориентацию, потому что, если вы сделаете это неправильно, вы можете ограничить поток воздуха блока питания, и это может привести к повреждению силовой платы блока, а также к некоторым другим компонентам. Итак, здесь я собираюсь рассказать вам о том, как правильно установить блок питания и должна ли сторона вентилятора оставаться вверх или вниз, в зависимости от различных условий и типов корпусов компьютера.

Типы корпусов компьютера для блока питания

Есть только два положения, в которых корпус компьютера позволяет установить блок питания, который находится либо сверху, либо снизу.

Корпус блока питания для ПК снизу

С нижними отверстиями

Большинство современных компьютерных корпусов имеют конструкцию блока питания снизу. Почти все эти корпуса для ПК имеют вентиляционные отверстия в нижней части, где устанавливается блок питания, и в большинстве из них на вентиляционных отверстиях установлен пылевой фильтр для предотвращения попадания пыли на вентилятор и компоненты блока питания. Итак, если у вас есть такое положение, то кулер блока питания должен быть направлен вниз. Это позволяет вентилятору всасывать воздух снизу, и выводить теплый воздух с задней стороны. Вы можете ясно видеть это на изображении ниже.

блок питания снизу с расположением вентилятора вниз

Я настоятельно советую не держать вентилятор источника питания вверх, если у вас есть корпус с вентиляционными отверстиями и воздушным фильтром, установленным снизу. Это связано с тем, что если держать вентилятор включенным, то эффективность охлаждения блока питания будет ухудшена, поскольку вентилятор будет всасывать горячий воздух, который находится внутри корпуса, вместо холодного воздуха и подавать его на компоненты блока питания.

Кроме того, блок питания будет накапливать больше пыли из-за отсутствия фильтра на кулере, а также существует риск попадания чего-либо внутрь блока питания через решетку вентилятора, что может привести к серьезному повреждению вашего устройства. В пользовательской системе с водяным охлаждением, вы не хотите держать вентилятор включенным, потому что, если жидкость каким-либо образом протечет и случайно попадет внутрь устройства, то ваш блок обязательно сгорит.

Без нижних отверстий

Если в вашем корпусе нет нижних вентиляционных отверстий, а вместо него сплошная панель, то вам нужно расположить кулер вверх. Это единственный способ установить устройство питания в этих случаях. Тем не менее, я не думаю, что есть много подобных случаев, но если они есть, то вам следует в первую очередь избегать их покупки, а лучше выбрать новый корпус для компьютера с нижними вентиляционными отверстиями и воздушным фильтром для вашего блока.

С кожухом блока питания

Некоторые компьютерные корпуса поставляются с кожухом или крышкой источника питания, которая служит дополнительной защитой для устройства, а также для дисков, установленных снизу. Кожух устройства питания представляет собой сплошную металлическую крышку без вентиляционных отверстий (в основном), поэтому в таких случаях положение вентилятора должно оставаться только вниз независимо от чего-либо. Некоторые кожухи поставляются с верхними вентиляционными отверстиями, которые могут позволить вам расположить вентилятор вверх, но если имеются нижние вентиляционные отверстия, то лучше держать вентилятор только в нижнем положении, если в нижней части нет вентиляционных отверстий для вентилятора БП.

системный блок с герметичной защитой блока питания внутри отдел блока питания с верхними отверстиями

Держите его на плоской поверхности

Всегда держите ваш шкаф на твердой плоской поверхности и никогда на неровных, мягких и мягких поверхностях, потому что неровные и мягкие поверхности ограничат поток воздуха к вентилятору устройства и, следовательно, к самому источнику питания. Кроме того, если корпус компьютера имеет короткие ножки, вы должны держать его поднятым, предоставляя какую-либо упаковку или опору под нижние ножки или подставки, чтобы источник питания мог иметь достаточный объем воздушного потока.

Избегайте размещения системного корпуса на ковре

Никогда не кладите корпус компьютера на ковер, если вентилятор источника питания снизу установлен вниз. Ковровое покрытие блокирует поток воздуха к блоку питания, и в худшем случае, если у вас не установлен фильтр вентилятора, небольшие частицы волокна с ковра могут осесть в вашем устройстве питания, а также могут засорить вентилятор. Кроме того, эти волокна для ковров очень сухие и имеют статическую природу и могут загореться внутри вашего устройства, что может привести к серьезному повреждению, а также других компонентов компьютера, если не повезет. Таким образом, чтобы решить эту проблему, вы можете использовать деревянную доску или фанерный вырез для размещения корпуса компьютера или установить питание таким образом, чтобы вентилятор был направлен вверх.

неправильное расположение системного блока с источником питания внизу и вентиляторами снизу

Корпус для ПК с верхним креплением

Компьютерные корпуса с установленным сверху источником питания в наши дни очень редки, но они существуют. Как правило, вы можете найти несколько корпусов серии mini-tower, OEM-корпусов и более дешевых корпусов с верхним расположением питания. В корпусах такого типа для компьютеров положение вентилятора должно быть ограничено только потому, что они обычно не имеют вентиляционных отверстий на верхней панели, но если в вашем корпусе есть верхние вентиляционные отверстия, то вы можете сохранить положение вентилятора в направлении вверх для лучшего воздушного потока и охлаждения. В некоторых из этих случаев также может быть установлен верхний кожух устройства питания (очень редко), поэтому необходимо соответствующим образом настроить вентилятор в направлении вентиляционных отверстий.

системный блок с верхним расположением блока питания

Ориентация вентилятора/монтажное положение

Тип корпуса Лопасти вниз Лопасти вверх Выдув теплого воздуха
Нижний БП да не доступно вниз
Нижний БП нет не доступно вверх
Нижний БП да нет вниз
Нижний БП нет да вверх
Верхний блок питания не доступно нет вниз

Как ставить блок питания при нижней установке в системнике, вентилятором вверх или вниз?

если в корпусе на дне есть отверстия типа таких то конечно вентилятором вниз, так задумано конструкцией, но если нет отверстий — то можно поставить вентилятором вверх,
при установке вентиляторов вверх есть минусы:
1. берет воздух горячий из корпуса, а не холодный снаружи
2. сильнее загрязняется
3. есть риск уронить гайку или болт, что подарит незабываемые впечатления от разборки блока, а если еще что-то попадет во время работы, то будет вообще весело)

Источник: опыт
beginnerМыслитель (5935) 12 лет назад
Остальные ответы

ну воздух идет на вдув, а на выдув вентилятор стоит сзади) значит надо место для воздуха) из этого следует что вентилятором вверх.

обычно от блока питания кулер выходит из задней крышки системного блока или же кулер будет нах-ся в самомо системном блоке направленным вниз.

Вступление

Идет время, компьютерные системы становятся мощнее, и только корпус системного блока практически не изменился – всё та же невзрачная металлическая коробка. Так ли все скучно в этой отрасли? Я не о смене цветовой гаммы или установке дополнительной иллюминации. Изменения есть, речь далее пойдет об одном технологическом новшестве. Спецификация ATX подразумевает установку блока питания рядом с той стороной печатной платы, где размещается процессор (и его радиатор). Но является ли это лучшим решением?

Качество работы компьютера зависит от надежности блока питания. А основная причина ухудшения его характеристик кроется в деградации свойств электролитических конденсаторов. Они и так работают на пределе мощности, да еще их подогревает горячий воздух из системного блока. Как известно из школьного курса химии, скорость химической реакции удваивается на каждые десять градусов. Для электролитических конденсаторов указывается температура в 105 градусов, но не задумывались, сколько времени они проработают при такой (или подобной) температуре? Цифра вас вовсе не обрадует.

Блок питания вверху или внизу?

Спецификация ATX по этому поводу говорит примерно следующее:

реклама

450x228 15 KB

При вертикальном исполнении системного корпуса данная концепция означает установку блока питания (‘PSU with fan’ на картинке) над платой. Такая компоновка раньше была обычным явлением и только в последнее время появились альтернативные конструкции. Довольно близко к стандартному исполнению выполнен довольно известный системный корпус Ascot 6AR2:

400x388 23 KB

В качестве ‘нестандартного’ решения можно предложить так же набирающий популярность корпус Cooler Master CM690 :

300x338 25 KB

Для проведения тестирования можно было бы взять два этих (или подобных им) системных блока и провести исследование … но при этом потеряется весь смысл – меняя корпус, нельзя учесть всех мелочей, влияющих на протекание воздушных потоков. Поэтому ни CM690, ни чего-либо аналогичного вы не увидите. Для обоих вариантов компоновки будет использован один и тот же корпус Ascot 6AR2, но с некоторыми доработками.

Подбор компонентов

Топологии исполнения системных блоков с размещением блока питания вверху и внизу очень похожи – основной блок элементов просто смещается вниз или вверх. Если взять разные корпуса, то с корректностью тестирования можно сразу проститься, поэтому в экспериментах будет участвовать один и тот же системный блок, а тип исполнения будет меняться перемещением системной платы и ее сопутствующих элементов крепления.

реклама

Вторая проблема – при проведении тестирования не ожидается значительного изменения температур, для повышения точности будет использовано пять датчиков с фиксацией их на местах измерений.

Чтобы оценить эффективность разных топологий, в корпусе надо собрать типичную конфигурацию системного блока. Но вряд ли хорошей идеей будет установка дорогостоящих компонентов в ‘пиленный’ корпус. Что же, значит эмуляция, так даже лучше. ‘Компьютер из резисторов’ набирать совсем уж скучно, поэтому использовалась системная плата на наборе микросхем nForce4 с совсем уж смешным процессором Athlon 64 3000+ (Venice) и видеокартой S3 Virge/DX. Подобная комплектация потребляет совсем чуть, поэтому остальное добиралось с помощью одного канала блока нагрузок. Такой вариант хорош тем, что можно весьма произвольно эмулировать тепловыделение компонентов в системном блоке.

Да и блок питания лучше подобрать обычный, который можно встретить в компьютерах: с высоким КПД и без заоблачной цены. Достойных кандидатур много, ну пусть будет FSP550-80GLN , благо его характеристики обсуждались ранее . Измеренный КПД для канала 12 В и мощности нагрузки 200-300 Вт составлял 89-90 процентов.

Тестовый стенд

  • Материнская плата: EPoX EP-9NPA+ (nForce4 Ultra);
  • Центральный процессор: AMD Athlon 64 3000+ (Venice) @ 2.5 ГГц 1.76 В;
  • Блок питания: FSP550-80GLN ;
  • Нагревательный элемент: один канал нагрузки 12 В для тестирования блоков питания.

Методика тестирования

Для начала хочется определиться с конфигурацией системного блока. Понятно, что будет применяться эмуляция, но она должна быть выполнена для действительно типичного случая. ‘Quad-SLI’ и ‘печатные машинки’ можно сразу отбросить — для них обычно используются специфические решения. Остается что-то вида Phenom x4 / Core i5 2500K с видеокартой AMD HD 6970 / NVIDIA GTX 570. С последним есть важный момент – некоторая часть видеокарт использует оригинальный дизайн системы охлаждения, без выноса нагретого воздуха из системного корпуса.

Однако не стоит переоценивать эффект от выноса тепла наружу в эталонных системах охлаждения – в видеокартах довольно много тепла рассеивается обратной стороной печатной платы. Что ж, даже у ‘типичной’ конфигурации получается довольно большой спектр номенклатуры, но вряд ли разумно проводить тестирование на всём её разнообразии – изменится лишь масштаб цифр, но не скажется на эффективности размещения блока питания внизу или вверху.

Мощность потребления современных процессоров порядка 50-150 Вт, видеокарт 150-230 Вт. При этом следует учесть, что самые производительные видеокарты (с большей мощностью потребления), как правило, удаляют значительную часть тепла за пределы корпуса, а нас интересует только тот нагрев, который происходит внутри системного блока. При некотором упрощении, положим тепловыделение процессора в 100 Вт и 150 Вт для видеокарты.

Пробный запуск тестового стенда показал, что Athlon 64 3000+ (Venice) на 1.76 В и 2.5 ГГц рассеивает около 50 Вт в тесте S&M. Это явно не дотягивает до требуемых 100 Вт, но большего от этого процессора не получить, и так было выставлено максимально возможное напряжение. Что же, нехватку в 50 Вт можно компенсировать за счет повышение тепловыделения дополнительного нагревательного элемента, что означает необходимость получения потребления на нем 200 Вт (150 Вт от видеокарты и дополнительные 50 Вт от процессора).

Это не совсем то, чего хотелось, но подобная перенастройка не скажется на результатах тестирования, ведь интерес представляет верх системного блока, именно там соберется тепло и от процессора, и от других элементов.

Давайте соберем все цифры в одном месте:

  • Мощность потребления процессора без нагрузки: примерно 8 Вт;
  • Мощность потребления процессора в программе S&M: 50 Вт;
  • Мощность потребления нагревательного элемента: 200 Вт;
  • Потребление системного блока от сети 220 В: 341 Вт;
  • Мощность нагрузки блока питания: 305 Вт;
  • Мощность потерь в блоке питания: 36 Вт.

Суммарное тепловыделение основных элементов (процессор + нагревательный элемент) составило 250 Вт, при этом полное — 305 Вт. Остальные (305-250=) 55 Вт расходуются на нужды системной платы (набор микросхем nForce4 и четыре модуля памяти), питание жесткого диска. Интересно, что потребление компьютера в номинальном режиме, без загрузки процессора Burn-программами, составляет всего лишь 74 Вт.

Методика исследования состоит в сравнении двух вариантов размещения блока питания при минимальном внесении изменений в другие элементы. Но это не означает, что будут сравниваться только два варианта. Наверно, стоит рассмотреть влияние скорости вращения вентиляторов и небольшое изменение воздушных потоков. Это означает, что будут рассматриваться три модификации на двух исполнениях корпуса.

1. Скорость вращения корпусных вентиляторов 1500 об/мин.
2. Скорость вращения снижена до 1000 об/мин.
3. То же, что и ‘2’, но с удалением заглушек неиспользуемых плат расширения.

Вариант ‘3’ интересен тем, что создает дополнительный приток ненагретого воздуха в системный блок. Подобный прием прост в реализации и довольно эффективен в снижении общей температуры в системном блоке. Для данного теста этот случай может оказаться чувствителен к месту размещения блока питания, ведь (при его расположении внизу) теплый воздух из него может проникать обратно в системный корпус через открытые отверстия плат расширения.

Результаты тестирования

Датчики 1-5 измеряют разность между температурой измеряемых точек и воздуха вне системного блока. Датчик номер 6 показывает температуру печатной платы, он находится где-то в недрах материнской платы, предположительно около верхнего разъема PCI, и его показания особого смысла не несут.

Первый тест.

Датчик Скорость вентиляторов, об/мин БП вверху, градусы БП внизу, градусы Разность, градусы
nForce4 1500 35.1 31.8 3.3
1000 38 37.8 0.2
1000 ** 37.9 36.9 1
Системная память 1500 22.4 24.2 -1.8
1000 25.2 30.5 -5.3
1000 ** 26.6 30.2 -3.6
Радиатор процессора 1500 22.3 25 -2.7
1000 27.9 31 -3.1
1000 ** 27.4 29.2 -1.8
Решетка БП 1500 13.2 12.8 0.4
1000 15.5 14.4 1.1
1000 ** 16 14.5 1.5
Вытяжной вентилятор 1500 11.1 13.5 -2.4
1000 14.8 19.7 -4.9
1000 ** 14.9 19 -4.1
Материнская плата * 1500 54 * 53 * 1
1000 57 * 57 * 0
1000 ** 51 * 56 * -5

* Все датчики, кроме этой позиции, показывают перегрев к температуре окружающего воздуха вне системного блока.
** Дополнительно сняты заглушки свободных плат расширения.

Второй тест.

Нижнее расположение блока питания, меняется ориентация его входного отверстия вверх или вниз, и дополнительная перфорация внизу корпуса. Корпусные вентиляторы работали со скоростью вращения 1000 об/мин.

реклама
Ориентация входного отверстия БП Дополнительная перфорация низа корпуса Воздух из БП, градусов Воздух из корпуса, градусов
Отверстием вверх,
воздух из корпуса
нет 13.5 18.9
есть 10.1 16.8
Отверстием вниз,
воздух снаружи
нет 4.3 20
есть 3.6 17.7
нет * 8 * 19.5 *

* Закрыт приток воздуха к вентилятору БП (довольно глупый режим).

Анализ результатов

Если просто бросить взгляд на последний столбец таблицы первого теста, то невольно приходит мысль о неэффективности размещения блока питания внизу – ‘в среднем’ температура стала больше, а сам блок питания как был горячим, так и остался. Но это беглый взгляд, давайте копнем глубже, и смысл в этом определенно присутствует.

Датчик номер 6.

Он установлен на материнской плате и находится левее PCI разъемов, а потому отражает температуру в этой зоне. Пока заглушки установлены, его показания мало зависят от варианта установки блока питания. Если же их снять, то это обеспечит приток прохладного воздуха и температура снизится… но только для случая с блоком питания вверху. При его нижнем расположении, через открытые щели плат расширения в корпус будет проникать вовсе не прохладный воздух, что сразу отразилось на результате – 56 градусов вместо 51.

Впрочем, если сравнить изменение показаний этого датчика со всеми остальными, то станет понятна бесполезность использования программного мониторинга для получения адекватных результатов замеров. Ну, сами посудите – при удалении заглушек этот датчик показал уменьшение температуры на 6 градусов, а другие датчики зафиксировали изменения только на 0.5-1 градус.

Датчики 1-5 показывают разность температур с окружающей средой, отсюда такие ‘маленькие’ цифры. Если хотите абсолютных величин, то прибавьте ту температуру воздуха, что и у вас в комнате. Положим, это 27 градусов. Значит, показания датчика ‘16 градусов’ следует понимать как 16+27=43 градуса, а это уже воспринимается как ‘довольно тепло’.

реклама

Датчик номер 1, набор микросхем nForce4.

Его особенность в том, что прямо под ним находится эмулятор видеокарты, нагревательный элемент. Когда блок питания внизу, то он хоть и немного, но отбирает тепло от ‘видеокарты’ и несколько улучшает перемешивание воздушной массы в этой зоне. Довольно странно, что наибольший эффект получается при большей скорости вращения корпусных вентиляторов.

Датчик номер 2, системная память.

Для случая размещения блока питания внизу, это место показывало явное ухудшение охлаждения. Причин несколько.

Во-первых, при размещении блока питания внизу, сама системная плата ’поднимается’ к верху корпуса. Это еще ничего, но нагретый воздух собирается вверху, при отсутствии активного перемешивания верхняя часть системной платы оказывается более теплой. Полученные измерения подтверждают эту предпосылку – при увеличении скорости вращения корпусных вентиляторов температура системной памяти снижается.

Во-вторых, когда блок питания установлен вверху, то он немного захватывает зону системной памяти. Точнее не так, его вентилятор ближе к памяти, а потому он немного забирает нагретый воздух из тепловой зоны над памятью, что немного снижает ее температуру. Системная память выделяет мало тепла, но она совсем не обдувается, поэтому и такая чувствительность даже к малейшему обдуву (отбору теплого воздуха).

Датчик номер 3, радиатор процессора.

Тут все просто и никаких разночтений. Когда блок питания вверху, то он работает в паре с корпусным вентилятором, что обеспечивает лучшее охлаждение. При переносе блока питания вниз сразу получается ухудшение на 2-3 градуса. В качестве оправдания напомню, что в корпуса с расположением блока питания вниз, довольно часто предусмотрено место или уже установлены два корпусных вентилятора на выдув. Один на обычное место и еще один (дополнительный) туда, где в стандартном варианте находился бы блок питания.

Датчик номер 5 (четвертый пока пропустим), вытяжной корпусной вентилятор.

Чем меньше его обороты, тем выше температура выходного потока. Когда блок питания вверху, то он помогает корпусному вентилятору, особенно на низкой скорости вращения последнего.

Датчик номер 4, температура воздушного потока из блока питания.

Ну вот, дошли до самого интересного. Блок питания ставят вниз только из того соображения, чтобы не нагревать его теплом от видеокарты и процессора. Провели тест и оказалось, что от места расположения температура блока питания не меняется? Ну, сами посудите – из таблицы видно, что разница между обоими вариантами установки составляет 1-2 градуса. Смысла нет! … Не совсем. В цифрах ошибки нет, все дело в отсутствии еще одной характеристики. Увы, но пока я не могу измерить скорость вращения вентилятора в блоке питания. Надеюсь, пробел будет устранен, но пока придется поверить мне “на слово”.

Когда блок питания был установлен в штатном варианте, сверху, то сила потока воздуха из него примерно равнялась потоку из корпусного вентилятора на 1500 об/мин. При установке вниз из блока питания выходило едва ощутимое дуновение. Даже больше, в первые несколько минут вентилятор на нем почти не вращался. По мере разогрева системного блока поток из БП стал более ощутим, но все равно он был несоизмеримо меньше варианта установки сверху.

Этой ‘глупости’ есть вполне обычное объяснение. Дело в том, что современные блоки питания регулируют скорость вращения своего вентилятора в зависимости от температуры в контрольной точке, которая, обычно, располагается на радиаторе выпрямительных диодов. Суть идеи в том, что чем больше нагрузка на блок питания, тем больше нагреваются выпрямительные диоды и тем энергичнее крутится вентилятор.

Но если нагрузка не очень большая (300 Вт для блока питания ‘550 Вт’ – это немного), то радиатор выпрямительных диодов нагревается недостаточно сильно и вентилятор вращается медленно. Вообще-то, есть два типа регуляторов – одни останавливают вентилятор при температуре ниже пороговой, как тестовый блок питания ( FSP550-80GLN ), а есть и такие, которые просто снижают скорость вращения до минимума, но продолжают крутиться. Последний вариант больше подходит для размещения вниз.

реклама

Ну хорошо, вентилятор в блоке питания вращается слабо, но почему же воздух из него нагрет столь сильно? Над блоком питания стоит эмулятор видеокарты, который нагревает воздух. По идее, этот воздух должен подниматься вверх и удаляться из корпуса верхним корпусным вентилятором, к тому же есть экран из видеоплаты PCI. Да, все так, но относительно высокая скорость прокачки воздуха через системный блок не позволяет нагретому воздуху спокойно подниматься вверх. Происходит перемешивание и вся область вокруг ‘видеокарты’ получает примерно равную температуру, в том числе и под ‘ней’. Далее воздух с повышенной температурой попадает в блок питания и выходит наружу. Вот так и получается – хоть блок питания поставили вниз, но температура воздуха из него осталась высокой.

Второй тест позволяет оценить чувствительность системы охлаждения к источнику охлаждающего воздуха блока питания и влияние дополнительного притока воздуха с низа корпуса, от перфорации в дне.

Когда блок питания для охлаждения берет воздух из корпуса, то его температура существенно больше, чем при использовании внешнего притока. На производительности общего охлаждения это сказывается, но как-то вяло. Здесь эффективнее оказывается простая перфорация в дне корпуса.

Последний вариант установки питания, во втором тесте, при своей глупости принес некоторую полезную информацию. В этом случае БП был установлен окном вентилятора вниз, но дно в корпусе системного блока осталось закрытым. Между блоком питания и дном остался небольшой промежуток, вот через эту щель и забирался воздух для охлаждения. Фактически, получился вариант установки типа ‘1’ с притоком воздуха из корпуса, но место забора ниже и теплая зона от ‘видеокарты’ (нагревательного элемента) дополнительно экранировалась корпусом самого блока питания.

В результате получилось что-то среднее между обоими вариантами ориентации блока питания, 8 градусов. Напомню, ‘нормальная’ установка окном вентилятора вверх или вниз давали 13.5 и 4.3 градуса соответственно. Довольно трудно придумать практическое применение такого решения. Разве что, при большой запыленности в помещении и обязательном применении фильтра на втяжном корпусном вентиляторе.

Заключение

С точки зрения системы охлаждения все ясно – размещение блока питания снизу позволяет ‘сделать’ его холоднее и тише. Что до общего охлаждения, то при такой компоновке на корпусные вентиляторы возлагается полная нагрузка по удалению нагретого воздуха. Когда блок питания находился вверху, то он работал в паре с верхним корпусным вытяжным вентилятором и брал часть нагрузки на себя. Поставили блок питания вниз – придется усилить выдув. Обычно в системных блоках с нижним расположением БП предусматривают установку двух вытяжных вениляторов в верхней части корпуса. Что касается перфорации в дне, то у такого решения не обнаружено недостатков. Поэтому, если в корпусе всё дно из дырок, это только на пользу.

Есть еще один момент, который может склонить чашу весов к переносу блока питания вниз. Современные процессорные кулеры не просто большие, а очень большие. Понятно, что в маленьком объеме мощность четырех- или шестиядерного процессоров не рассеять, поэтому надо рассчитывать на наихудший вариант. Например, в моем личном компьютере на Core 2 Quad получилась такая компоновка:

173x253 11 KB

Обратите внимание, радиатор находится рядом с заборным окном блока питания. Ну и как это будет работать, если потоки в радиаторе движутся а-бы-как? Замечено, что вентилятор начинает издавать повышенный шум, если препятствие находится прямо перед ним. Попробуйте как-нибудь взять его и поднести ладонь перед ним и за ним (по направлению потока воздуха). Если поднести руку ‘после’, то уровень шума практически не меняется, а ‘перед’? Увы. Это означает, что в моей компоновке я получил больший уровень шума ‘просто так’. А что делать, если варианты отсутствуют.

И еще один момент. Не столь существенный, но тоже интересный. Обратите внимание на связки проводов из блока питания для первого и второго вариантов. Если блок питания вверху, то кабели питания идут там же, образуя кучу. При размещении блока питания внизу, эти кабели захламляют дно и не бросаются в глаза. Понятно, что их можно красиво обвязать или убрать в поддон, но это надо еще сделать, да и оперативность смены аппаратуры теряется.

Итак, кратко – нижнее размещение блока питания уменьшает его температуру, что благотворно сказывается на уровне шума и долговечности самого БП. К недостаткам можно отнести немного возросшую нагрузку на вытяжной вентилятор, но эта проблема может решаться конструктивными элементами — установкой второго вытяжного вентилятора и/или перфорацией в дне корпуса.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *