Сколько решений имеет логическое уравнение x1 x2
Перейти к содержимому

Сколько решений имеет логическое уравнение x1 x2

  • автор:

Задание 14 Параграф 18 ГДЗ Босова 10 класс (Информатика)

Изображение 14. Сколько решений имеет логическое уравнение X1 & Х2 v Х3 & X4 = 1?X1 & X2 V X3 & X4=1Ответ: 7.

*Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.

*размещая тексты в комментариях ниже, вы автоматически соглашаетесь с пользовательским соглашением

Похожие решебники

Рабочая тетрадь
Босова, Босова, Лобанов

Популярные решебники 10 класс Все решебники

Атанасян 10-11 класс
Атанасян, Бутузов
Юлия Ваулина, Джунни Дули
Греков 10-11 класс
Греков, Крючков, Чешко
Максаковский
Максаковский

Изображение учебника

§18. Алгебра логики.
§19. Таблицы истинности.

©Reshak.ru — сборник решебников для учеников старших и средних классов. Здесь можно найти решебники, ГДЗ, переводы текстов по школьной программе. Практически весь материал, собранный на сайте — авторский с подробными пояснениями профильными специалистами. Вы сможете скачать гдз, решебники, улучшить школьные оценки, повысить знания, получить намного больше свободного времени.

Главная задача сайта: помогать школьникам и родителям в решении домашнего задания. Кроме того, весь материал совершенствуется, добавляются новые сборники решений.

Сколько различных решений имеет система логических уравнений

где x1,x2,…,x7 и y1,y2,…,y7 – логические переменные?

Голосование за лучший ответ

сэмь так восэмь

Aynur MasalimovУченик (79) 3 года назад

это солькэ?)

Nick Оракул (78355) Aynur Masalimov, ну, точно не дэвять.

Сколько переменных, столько и решений. Логично?

Похожие вопросы

Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Сколько решений имеет логическое уравнение x1 x2

Задания ЕГЭ по номерам:

  • 1 Системы счисления
  • 2 Таблицы истинности
  • 3 Поиск кратчайшего пути
  • 4 Базы данных
    Файловая система
  • 5 Кодирование информации
  • 6 Анализ алгоритмов
  • 7 Электронные таблицы
  • 8 Программирование: циклы
  • 9 Объем информации
    Передача информации
  • 10 Комбинаторика
  • 11 Рекурсивные алгоритмы
  • 12 Сети, адресация
  • 13 Количество информации
  • 14 Алгоритмы с исполнителем
  • 15 Поиск путей в графе
  • 16 Системы счисления
  • 17 Запросы для поисковых систем
  • 18 Логические выражения
    Отрезки, множества, функции
  • 19 Программирование: массивы
  • 20 Программирование: циклы
  • 21 Программирование: подпрограммы
  • 22 Перебор вариантов
  • 23 Системы логических уравнений
  • 24 Программирование: поиск ошибки в программе
  • 25 Программирование: обработка массивов
  • 26 Теория игр
  • 27 Программирование: разработка программы

Просмотр задания

Сколько различных решений имеет система уравнений?
((x1=y1)->(x2=y2)) ∧ (x1->x2) ∧ (y1->y2) =1
((x2=y2)->(x3=y3)) ∧ (x2->x3) ∧ (y2->y3) =1

((x6=y6)->(x7=y7)) ∧ (x6->x7) ∧ (y6->y7) =1

25 марта 2016

Нет ответов, ваш ответ будет первым

Сколько решений имеет логическое уравнение x1 x2

С помощью тождественных преобразований максимально упростить следующее логическое выражение:

`bar C vv` (`A` & `С`) `vv` (`bar(A vv C vv bar(B)`)

Максимально упростить, это значит довести выражение до такого вида, когда невозможно применить ни один из законов алгебры логики, которые сокращают длину выражения.

Для того, чтобы не запутаться, можно использовать общую стратегию упрощения логических выражений.

1) Избавиться от операций импликации.

2) Продвинуть отрицание вглубь выражения. То есть применять законы де Моргана, и закон двойного отрицания пока знак отрицания не будет стоять только над переменными (но не над операциями).

После пункта 2 наступает относительная свобода действий. Можно использовать тождества поглощения или раскрывать скобки.

В нашей задаче операция импликации отсутствует, поэтому первый пункт мы пропускаем. Переходим к пункту 2. Применяем два раза второй закон де Моргана (для дизъюнкции) и закон двойного отрицания к правой скобке и получаем следующее логическое выражение:

`bar C vv ` (`A` & `C`) `vv` (`bar A` & `bar C` & `B`)

Если теперь внимательно посмотреть на выражение, то очевидно, что к первому и третьему слагаемому можно применить первый закон поглощения, так как отрицание переменной `C` является первым слагаемым и входит в третье в качестве множителя.

Поскольку дизъюнкцию ещё называют логическим сложением, её операнды называют слагаемыми, аналогично конъюнкция – это логическое умножение, и её операнды называют множителями.

После применения первого закона поглощения получается следующее логическое выражение:

Применим второй (нестандартный для алгебры) закон дистрибутивности. Получаем:

(`bar C vv A`) & (`bar C vv C`)

Ко второй скобке применяем закон исключённого третьего, превращаем её в единицу, а затем применяем закон поглощения константы `1` и в итоге получаем выражение: `bar C vv A`, которое упростить уже нельзя.

Для лучшего понимания, рекомендуется выписать исходное логическое выражение, последовательно применить к нему все описанные действия и сравнить свой результат с приведённым в конце решения задачи.

Обратите внимание, что исходное логическое выражение зависело от трёх переменных (`A, B, C`) , в то время как упрощённое в итоге зависит от двух логических переменных (`A` и `C`). При этом выражения всё равно остаются равносильными! Это происходит потому, что в процессе упрощения применялись законы поглощения. Аналогичный результат мог бы получиться, если в процессе упрощения выражения используются законы поглощения переменных константами. Исчезновение переменной при упрощении означает, что в исходном выражении она является несущественной.

Укажите значения переменных `K`, `L`, `M`, `N`, при которых логическое выражение `(L vv M) ^^ (¬ K -> M) ^^ ¬ N ^^ ¬ M` истинно.

Будем следовать стратегии, описанной в предыдущем примере. Первым делом избавляемся от операции импликации. Получаем следующее выражение:

`(L vv M) ^^ ( K vv M) ^^ ¬ N ^^ ¬ M`

Отрицание вглубь продвигать не надо. Теперь раскроем скобки. Для упрощения условимся операцию конъюнкции никак не обозначать (по аналогии с алгеброй чисел).

`(LK vv LM vv MK vv M) ( ¬ N) ( ¬ M)`

В первой скобке можно применить тождество поглощения, и «съесть» второе и третье слагаемое, которые содержат M в качестве множителя. Получается такое выражение:

`(LK vv M) ( ¬ N) ( ¬ M)`

Выполнив оставшиеся операции умножения, получим следующий результат:

Получили одну конъюнкцию. Следовательно, существует всего один набор значений переменных, при котором получится значение «1»: `L=1`, `K=1`, `N=0`, `M=0`.

Сколько решений имеет уравнение:

`(((K¬L¬N) (¬L -> M))` \/ `((¬K` \/ `L` \/ `N) (¬L¬M))) (K`\/`N)=1`

Исходное выражение достаточно сложное, поэтому будем его упрощать. Первым делом избавимся от импликаций, получим:

`(((K¬L¬N) (L`\/ `M))` \/ `((¬K` \/ `L` \/ `N) (¬L¬M))) (K`\/`N) = 1`

Теперь раскроем скобки. Для упрощения условимся не записывать слагаемые, куда одновременно входят некоторая переменная и её отрицание (они всё равно равны нулю):

`(K¬L¬NM` \/ `¬K¬L¬M` \/ `N¬L¬M) (K`\/`N) = 1`

Продолжаем раскрытие скобок. Получаем:

`K¬L¬NM` \/ `¬K¬L¬MN` \/ `KN¬L¬M` \/ `N¬L¬M = 1`

Ко второму, третьему и четвёртому слагаемому можно применить тождество поглощения. В итоге получится:

`K¬L¬NM` \/ `N¬L¬M = 1`

На этом упрощение закончено, теперь будем анализировать. Дизъюнкция равна единице, если хотя бы одно из слагаемых равно единице. Первое слагаемое равно единице на единственном наборе переменных: (`K=1`, `L=0`, `N=0`, `M=1`). Второе слагаемое равно единице на двух наборах: (`N=1`, `L=0`, `M=0`, `K` – любое (или `0` или `1`)). Соответственно, уравнение имеет три различных решения.

В нарушении правил обмена валюты подозреваются четыре работника банка — Антипов (`A`), Борисов (`B`), Цветков (`C`) и Дмитриев (`D`). Известно, что:

1) Если `А` нарушил, то и `В` нарушил правила обмена валюты.

2) Если `B` нарушил, то и `C` нарушил или `A` не нарушал.

3) Если `D` не нарушил, то `A` нарушил, а `C` не нарушал.

4) Если `D` нарушил, то и `A` нарушил.

Кто из подозреваемых нарушил правила обмена валюты?

Чтобы решить эту задачу, необходимо провести процесс формализации условия, сформировать единое логическое выражение и провести его упрощение. Выделим из условия четыре простых высказывания: «`A` нарушил правила», «`B` нарушил правила», «`C` нарушил правила», и «`D` нарушил правила». Обозначим их соответственно буквами `A`, `B`, `C`, `D`. Тогда высказывания из условия формализуются следующим образом (конъюнкция не обозначается никак):

Нам известно, что выполняются все 4 высказывания, следовательно, нужно объединить их знаками конъюнкции и найти наборы, при которых получившееся общее высказывание будет истинным. Эти наборы и покажут нам, какие возможны ситуации (правила обмена нарушил тот, у кого переменная в итоговом наборе имеет значение «1»).

Итак, строим логическое выражение:

`(A -> B)( B -> C` \/ `¬A)( ¬D -> A¬C)( D -> A)`.

Теперь будем его упрощать. По алгоритму первым делом избавляемся от операции импликации. Получаем следующее выражение:

`(¬A` \/ `B)( ¬B` \/ `C` \/ `¬A)( D` \/ `A¬C)( ¬D` \/ `A)`.

Раскрываем скобки. Первую перемножаем со второй, а третью с четвёртой.

`(¬A¬B` \/ `¬AC` \/ `¬A` \/ `BC` \/ `B¬A) ( DA` \/ `A¬C¬D` \/ `A¬C)`.

Напомним, что слагаемые, равные нулю по причине того, что в них входит сразу и переменная и её отрицание, мы не записываем. В первой скобке теперь можно применить тождество поглощения, и «съесть» все слагаемые, имеющие в своём составе `A` с отрицанием. Во второй скобке можно также применить тождество поглощения, и «съесть» второе слагаемое. В итоге получаем:

`( ¬A` \/ `BC ) ( DA` \/ `A¬C)`.

При раскрытии оставшихся скобок три из четырёх слагаемых окажутся равными нулю, а последнее будет выглядеть следующим образом: `ABCD`. Из этого следует, что все четверо работников банка нарушили правило обмена валюты. (Только в этой ситуации предположения из условия задачи одновременно выполняются).

Правила обмена валюты нарушили все.

Известно, что обе надписи на дверях либо истинны, либо ложны одновременно. Надпись на первой двери – «Клад за другой дверью», на второй двери – «Клада за этой дверью нет, а за другой – есть». Где находится клад?

По сути нас интересуют два простых высказывания: «Клад есть за первой дверью» и «Клад есть за второй дверью». Обозначим первое из них буквой `A`, а второе буквой `B`. Тогда изначальные предположения формализуются следующим образом:

В этой задаче в отличие от предыдущей у нас две возможные ситуации относительно комбинирования начальных предположений – они либо оба истинны, либо оба ложны. Предположим, что они оба истинны, тогда при их перемножении получится тождественный ноль, что означает невозможность данной ситуации.

Предположим, что оба высказывания ложны, тогда необходимо перед перемножением на каждое из них «навесить» отрицание (рассматривать истинность противоположных высказываний) В итоге получится следующее логическое выражение:

Упрощаем его по алгоритму: отрицание продвигаем вглубь, применяя тождество Де Моргана. Получаем:

`¬B (B` \/ `¬A)`.

Раскроем скобки. Первое слагаемое сокращается, а второе выглядит следующим образом: `¬B¬A`.

Полученный результат означает, что условия задачи выполняются, только в случае, когда оба высказывания ложны, а это означает, что клада нет ни за одной дверью. Не повезло нам `J`.

Клада нет ни за одной дверью.

В заключение приведём общую схему решения текстовых логических задач, которую мы уже применяли на практике при разборе примеров.

схема решения текстовых логических задач

1) Выделить из условия задачи элементарные (простые) высказывания и обозначить их буквами.

2) Записать условие задачи на языке алгебры логики, соединив простые высказывания в сложные с помощью логических операций.

3) Составить единое логическое выражение для всех требований задачи (возможно не одно).

4) Используя законы алгебры логики попытаться упростить полученное выражение и вычислить все его значения либо построить таблицу истинности для рассматриваемого выражения (Таблицу можно строить, если в выражении не более трёх логических переменных).

5) Выбрать решение — набор значений простых высказываний, при котором построенное логическое выражение является истинным;

6) Проверить, удовлетворяет ли полученное решение условию задачи.

Среди задач алгебры логики часто встречаются задачи на определение количества решений систем логических уравнений. Рассмотрим примеры некоторых их них.

Найдите количество решений системы уравнений:

`(x2-=x1)+x2&x3+ not x2& not x3=1`

`(x3-=x1)+x3&x4+ not x3& not x4=1`

`(x9-=x1)+x9 & x10+ not x9 & not x10=1`

где `x1 … x10` — неизвестные логические величины

Упростим исходные уравнения, заметив, что, `(x2&x3+ not x2& notx3=(x2-=x3)`. Исходную систему запишем в виде:

В первом уравнении используются три переменных `x1`, `x2` и `x3`. Значения `x1` и `x2` могут быть выбраны произвольно четырьмя способами:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *