Как снять ачх колонки
Перейти к содержимому

Как снять ачх колонки

  • автор:

Акустические измерения. Измеряем АЧХ подручными средствами

Я купил bluetooth-наушники Motorola Pulse Escape. Звучание в целом понравилось, но остался непонятен один момент. Согласно инструкции, в них имеется переключение эквалайзера. Предположительно, наушники имеют несколько вшитых настроек, которые переключаются по кругу. К сожалению, я не смог определить на слух, какие там настройки и сколько их, и решил выяснить это при помощи измерений.

Итак, мы хотим измерить амплитудно-частотную характеристику (АЧХ) наушников — это график, который показывает, какие частоты воспроизводятся громче, а какие — тише. Оказывается, такие измерения можно произвести «на коленке», без специальной аппаратуры.

Нам понадобится компьютер с Windows (я использовал ноутбук), микрофон, а также источник звука — какой-нибудь плеер с bluetooth (я взял смартфон). Ну и сами наушники, конечно.

(Под катом — много картинок).

Подготовка

Вот такой микрофон у меня нашёлся среди старых гаджетов. Микрофон копеечный, для разговоров, не предназначенный ни для записи музыки, ни тем более не для измерений.

Конечно, такой микрофон имеет свою АЧХ (и, забегая вперёд, диаграмму направленности), поэтому сильно исказит результаты измерений, но для поставленной задачи подойдёт, потому что нас интересуют не столько абсолютные характеристики наушников, сколько то, как они изменяются при переключении эквалайзера.

У ноутбука имелся всего один комбинированный аудиоразъём. Подключаем туда наш микрофон:

Windows спрашивает, что за прибор мы подключили. Отвечаем, что это микрофон:

Windows — немецкий, извините. Я ведь обещал использовать подручные материалы.

Тем самым единственный аудиоразъём оказывается занятым, поэтому и нужен дополнительный источник звука. Скачиваем на смартфон специальный тестовый аудиосигнал — так называемый розовый шум. Розовый шум — это звук, содержащий весь спектр частот, причём равной мощности по всему диапазону. (Не путайте его с белым шумом! У белого шума другое распределение мощности, поэтому его нельзя использовать для измерений, это грозит повреждением динамиков).

Настраиваем уровень чувствительности микрофона. Нажимаем правую кнопку мыши на значке громкоговорителя в Windows и выбираем регулировку устройств записи:

Находим наш микрофон (у меня он получил название Jack Mic):

Выбираем его в качестве устройства записи (птичка в зелёном кружочке). Выставляем ему уровень чувствительности поближе к максимуму:

Microphone Boost (если есть) убираем! Это автоматическая подстройка чувствительности. Для голоса — хорошо, а при измерениях будет только мешать.

Устанавливаем на ноутбук измерительную программу. Я люблю TrueRTA за возможность видеть сразу много графиков на одном экране. (RTA — по-английски АЧХ). В бесплатной демо-версии программа измеряет АЧХ с шагом в октаву (то есть соседние точки измерения отличаются по частоте в 2 раза). Это, конечно, очень грубо, но для наших целей сойдёт.

При помощи скотча закрепляем микрофон около края стола, так чтобы его можно было накрыть наушником:

Важно зафиксировать микрофон, чтобы не сдвинулся в процессе измерений. Подсоединяем наушники проводом к смартфону и кладём одним наушником поверх микрофона, так чтобы плотно закрыть его сверху — примерно так наушник охватывает человеческое ухо:

Второй наушник свободно висит под столом, из него мы будем слышать включённый тестовый сигнал. Убеждаемся, что наушники лежат стабильно, их тоже нельзя сдвигать в процессе измерений. Можно начинать.

Измерения

Запускаем программу TrueRTA и видим:

Основная часть окна — поле для графиков. Слева от него находятся кнопки генератора сигналов, он нам не понадобится, потому что у нас внешний источник сигнала, смартфон. Справа — настройки графиков и измерений. Сверху — ещё кое-какие настройки и управление. Ставим белый цвет поля, чтобы лучше видеть графики (меню View → Background Color → White).

Выставляем границу измерений 20 Hz и количество измерений, скажем, 100. Программа будет автоматически делать указанное количество измерений подряд и усреднять результат, для шумового сигнала это необходимо. Выключаем отображение столбчатых диаграмм, пусть вместо них рисуются графики (кнопка сверху с изображением столбиков, отмечена на следующем скриншоте).

Сделав настройки, производим первое измерение — это будет измерение тишины. Закрываем окна и двери, просим детей помолчать и нажимаем Go:

Если всё сделано правильно, в поле начнёт вырисовываться график. Подождём, пока он стабилизируется (перестанет «плясать» туда-сюда) и нажмём Stop:

Видим, что «громкость тишины» (фоновых шумов) не превышает -40dBu, и выставляем (регулятор dB Bottom в правой части окна) нижнюю границу отображения в -40dBu, чтобы убрать фоновый шум с экрана и покрупнее видеть график интересующего нас сигнала.

Теперь будем измерять настоящий тестовый сигнал. Включаем плеер на смартфоне, начав с малой громкости.

Запускаем измерение в TrueRTA кнопкой Go и постепенно прибавляем громкость на смартфоне. Из свободного наушника начинает доноситься шипящий шум, а на экране возникает график. Добавляем громкость, пока график не достигнет по высоте примерно -10. 0dBu:

Дождавшись стабилизации графика, останавливаем измерение кнопкой Stop в программе. Плеер тоже пока останавливаем. Итак, что мы видим на графике? Неплохие басы (кроме самых глубоких), некоторый спад к средним частотам и резкий спад к верхним частотам. Напоминаю, что это не настоящая АЧХ наушников, свой вклад вносит микрофон.

Этот график мы возьмем в качестве эталонного. Наушники получали сигнал по проводу, в этом режиме они работают как пассивные динамики без всяких эквалайзеров, их кнопки не действуют. Занесём график в память номер 1 (через меню View → Save to Memory → Save to Memory 1 или нажав Alt+1). В ячейках памяти можно сохранять графики, а кнопками Mem1..Mem20 в верхней части окна включать или отключать показ этих графиков на экране.

Теперь отсоединяем провод (как от наушников, так и от смартфона) и подключаем наушники к смартфону по bluetooth, стараясь не сдвинуть их на столе.

Снова включаем плеер, запускаем измерение кнопкой Go и, регулируя громкость на смартфоне, приводим новый график по уровню к эталонному. Эталонный график изображён зелёным, а новый — синим:

Останавливаем измерение (плеер можно не выключать, если не раздражает шипение из свободного наушника) и радуемся, что по bluetooth наушники выдают такую же АЧХ, как по проводу. Заносим график в память номер 2 (Alt+2), чтоб не ушёл с экрана.

Теперь переключаем эквалайзер кнопками наушников. Наушники рапортуют бодрым женским голосом «EQ changed». Включаем измерение и, дождавшись стабилизации графика, видим:

Хм. Кое-где есть отличия в 1 децибел, но это как-то несерьёзно. Скорее похоже на погрешности измерений. Заносим и этот график в память, переключаем эквалайзер ещё раз и после измерения видим ещё один график (если очень хорошо присмотреться):

Ну, вы уже поняли. Сколько я ни переключал эквалайзер на наушниках, никаких изменений это не давало!

На этом, в принципе, можно заканчивать работу и делать вывод: у этих наушников работающего эквалайзера нет. (Теперь понятно, почему его не получалось услышать).

Однако тот факт, что мы не увидели никаких изменений в результатах, огорчает и даже вызывает сомнения в правильности методики. Может, мы измеряли что-то не то?

Бонусные измерения

Чтобы убедиться, что мы измеряли АЧХ, а не погоду на Луне, давайте покрутим эквалайзер в другом месте. У нас же есть плеер в смартфоне! Воспользуемся его эквалайзером:

И вот результат измерений:

Вот это другое дело! Новый график заметно отличается от старых. Занесём его тоже в память (у меня получился номер памяти 6) и найдём разность между новым графиком и эталонным, TrueRTA это умеет (меню Utilities → Difference):

Вычитаем из графика номер 6 график номер 1 и помещаем результат в память номер 12. Убираем остальные графики с экрана кнопочками Mem1, Mem2 и т. д., оставляем только Mem12:

Не правда ли, эта кривая приблизительно напоминает то, что обещал эквалайзер?

Выключаем эквалайзер, с ним всё понятно. А ещё я говорил вначале, что нельзя двигать наушники и микрофон между измерениями. А что будет, если сдвинуть на сантиметр?

Смотрите-ка, от сдвига график слегка изменился: басов поубавилось, верхов добавилось. Это говорит, скорее всего, о том, что у микрофона различная чувствительность к звукам, приходящим с разных направлений (это называется диаграммой направленности).

Проведём ещё один опыт: измерим звучание, отказавшись от закрытого объёма. Вот так:

И что же мы видим в результате?

Измеряем АЧХ грамотно и осмысленно.

В стандарте замера АЧХ измерительный микрофон устанавливается на расстоянии 1м. На оси твиттера. Почему с одного метра? А почему бы и нет. Цифра ровная. Скажите спасибо, что мы используем метрическую систему. Почему на оси твиттера… Иначе привязать стандарт больше не к чему.

Стандарт подразумевает замер АЧХ под углами 30 и 60 градусов по горизонтали, на оси твиттера. Теоретически это вроде как бы, должно показывать, как будет себя вести АЧХ при перемещении слушателя в пространстве комнаты. Но в реальной ситуации, когда слушатель перемещается в пространстве все эти замеры не имеют особого смысла.

При перемещении слушателя даже на небольшое расстояние от центра, проходят несколько событий. Действительность гораздо более многогранна, чем одна АС на расстоянии 1 метра на оси твиттера.

Более типична ситуация, когда расположение ушей слушателей находится выше или ниже оси твиттеров. Но замеров АЧХ при смещении оси твиттеров вверх и низ не делают. Так как подобные замеры покажут катастрофическое искажения АЧХ почти у любой акустики. Вплоть до уровней +-20Дб.

Удобно замерять АЧХ одной АС. Но акустических систем обычно две. И АЧХ двух АС сильно отличается от АЧХ одной. Так расстояния от правой и левой АС и ушами слушателя не бывает одинаковым. А уже на частоте 3 кГц разница в расстоянии от левой и правой АС всего в 11 см. приводит к противофазности звучания каналов на высоких частотах.

Кардинально меняется угол входа звуковых волн в ушную раковину. Вы можете самостоятельно проделать простейший эксперимент. Взять легкую колонку и послушать ее звучание при различном угле относительно вашей ушной раковины. Покрутив ее вокруг уха и головы. Этот опыт вам сразу покажет, что наилучшая фокусировка звуковых волн происходит под углом около 15 градусов. А совсем не по правилам равностороннего треугольника.

Человек слышит в основном вперед, а не в сторону. Причем разница в звучании (АЧХ) от угла входа звуковых волн в ушную раковину будет радикальной. На слух, АЧХ от различного угла входа в ушную раковину меняется на значения порядка +-25Дб.

И никто не знает, каким должен быть «правильным» угол входа в ушную раковину. Этот вопрос находится вне дискурса.

Замеры отдельных динамических головок, и их АЧХ с одного метра, на оси динамика имеют огромный смысл. Таким образом понятно, какие характеристики этот динамик имеет. И как его лучше использовать.

В случаи когда производятся замеры готовых акустических систем, измеряют, то что удобно измерять. С целью публикации красивых графиков в рекламных материалах. Никаких особовых выводов и смыслов из этих графиков получить нельзя.

Предлагаем вам использовать практически работающую технологию замера АЧХ. Ее повсеместно используют в профессиональной деятельности, в концертной практике, для отстройки звучания акустики в различных помещениях.

В реальной жизни не важно, какая у одной колонки АЧХ на расстоянии 1 м. на оси твиттера. Так как в реальной жизненной практике так не бывает, — никто не слушает одну колонку с расстояния в 1м.

Важно другое. Как акустическая пара формирует общую картину АЧХ в 3D пространстве.

Для этой цели удобна программа — Анализатор аудио спектра TrueRTA . Но может быть любая другая программа анализатор спектра с большой разрядность (1/24 октавной полосы).

Сглаживание в 1/3 и 1/6 октавной полосы, как это принято делать в статьях для рекламы акустики, в большенстве случаев будет мало. Заведомое снижение разрешения в 3-6 раза, разумется делает гафик более ровным. Но на этом разрешени пропадают узкие выбросы АЧХ.

Которые лучше увидеть, и знать, что они есть. Или знать, что их нет.

Проще всего использовать ее на ноутбуке. Но имейте ввиду, что процессора уровня Atom ей будет недостаточно, для того, что бы считать 1/24 октавной полосы в реальном времени. Нужен процессор хотя бы уровня нижнего i3.

При наличии длинного микрофонного кабеля, в домашних условиях пойдет и ПК. Менее удобно, но если зрение или очки хорошие, работать вполне можно.

Потребуется измерительный микрофон и источник фантомного питания для него. Так как все измерительные микрофоны конденсаторного типа. И требуют для своей работы питания.

Фантомное питание есть в большинстве нормальных звуковых карт. И как правило, звуковая карта с фантомным питанием стоит так же, как и без фантомного питания. Даже если вам сейчас не нужно мерить АЧХ, — покупайте карточку с фантомным питанием. Возможно через 5-10 лет оно вам пригодиться. Про звуковые карты можно почитать — Звуковые карты usb, полный обзор.

Измерительные микрофоны в большинстве случаем делают на одном капсюле. Из дешевых это Nady CM 100 и Behringer ECM8000. И судя по всему это один и тот же микрофон, но под разным названием.

Цена вопроса — порядка 80 долларов в магазинах России. Или, они же, из Китая.

При этом эти микрофоны можно использовать как обычные качественные микрофоны для записи чего угодно. Это не есть выброшенные разово деньги на замер АЧХ. Они как микрофоны вполне себе приличные. Лично записал несколько сотен часов закадрового текста для ТВ программ. Они лучше чем топовые петличные микрофоны класса Сони-Синхайзер под $500 (у них диафрагма больше, чем у петличных микрофонов).

А если энтузиазм по азмеру АЧХ у вас совсем исякнет — измерительные микрофоны хорошо ликвидны на авито.

Производитель прикладывает график АЧХ микрофонов:

В большинстве случаев этот график АЧХ будет иметь очень близкое соответствие. В измерительных микрофонах очень модно использовать капсюли WM-60A Panasonic.

Стоят эти капсюли WM-60A в большой партии порядка 1 доллара.

Продают их китайцы по цене порядка 15 долларов — ссылка.

Производить микрофоны с ровной АЧХ, в современном мире, приблизительно так же сложно, как делать столы с ровной столешницей.

Для контроля анормальности АЧХ можно посмотреть, что он показывает на паре известных вам мониторов. Либо сравнить его с другим микрофоном, с известной АЧХ.

Существуют более дорогие варианты измерительных микрофонов. Но похоже все микрофоны до 300 долларов это те же самые микрофоны. С тем же самым капсюлем.

А те которое стоят порядка 2000 долларов имеют точность на 1 дб лучше. И ценность в них в большей степени в том, что они как правило откалиброваны, с прилагаемым к ним графиком.

Все очень просто. Программа генерирует розовый шум. Акустика его воспроизводит. Перемещая измерительный микрофон мы смотрим, в реальном времени, общую картину АЧХ в пространстве. Получается очень быстро. И очень информативно.

За пару минут можно отсканировать все. Любые углы. Любые расстояния. Пройти всю комнату.

Измерять же АЧХ смартфоном, используя микрофон самого смартфона, занятие абсолютно бестолковое. Ничего вы не замерите, — даже приблизительно понять какая АЧХ не получится. Не тратьте на это время.

Существуют приблуды для смартфонов. Например для iPhone (не всех версий!) есть SA-4100 i. Но это мы не рекомендуем. Будет менее удобно и как это всегда у смартфонов, — все сильно упрошено и опошлено.

Мы нашли дивайс для замера не только АЧХ, но и АЧХ наушников Dayton Audio iMM-6. То же под iPhone:

Если кто знает подобные устройства под андроид — напишите в коментах.

Следует понимать, что не следует ставить себя задачу свести акустику с идеальной АЧХ.

Ровная, красивая АЧХ получиться только в том случаи, когда на НЧ/СЧ динамике будет стоять «жесткий» фильтр в районе 2.5 кГц, или еще ниже.

И ровная эта АЧХ будет только в самом их ближнем поле. После того как вы походите с микрофоном по комнате, и увидите реальную АЧХ в пространстве комнаты, желание прибывать или убавить 2Дб в каком то месте у вас сразу исчезнет. К примеру, вы сразу обнаружите, что ВЧ на расстоянии одного метра вполне достаточно. Но если мерить эти ВЧ уже с расстояния 2-3 метра, — они по дороге куда-то сильно деваются.

«Жесткий» фильтр в районе 1.5-2.5 кГц задает специфический «характер звучания» акустики. Его можно охарактеризовать, как типичный «новодел» или «мониторное» звучание. Годится слушать скрипки и аудиофильский джаз и прочею Реббеку Пупкину. А слушать музыку будет на этой акустике не особо приятно.

АЧХ конечно должна пребывать в неких рамках. На практике даже меньших чем чем это декларирует стандарт DIN (+-3Дб).

Воспринимаемое людьми качество не имеет прямой зависимости от ровности АЧХ.

Если вы сталкиваетесь с АС у которой АЧХ имеет идеальную форму близкую к линии, вероятность того что на этой акустике будет приятно слушать музыку (не демо фонограммы) будет стремится к нулю.

80 полосный цифровой эквалайзер, которым можно сделать идеально-плоскую АЧХ, не поднимает класс акустических систем.

Если вам требуется точно померить АЧХ… Увидеть, как она выглядит во всех нюансах, то рекомендуем программу:

Arta Software

От всех других аналогичных программ ее отделяет интуитивно понятный интерфейс при огромном функционале возможностей.

Последняя версия программы доступна на сайте разработчиков. Ниже, в разделе приложение, мы даем ее полное описание и методику работы с программой Arta Software. Программа вроде платная. Но это мало кого останавливает, так как, кто ищет тот всегда найдет.

Измерять АЧХ можно самым простейшим образом. Тупо послал сигнал на усилитель-динамик и замерил микрофоном результат:

АЧХ почти сразу можно увидеть в таком виде:

Помимо этого программа позволяет замерять всякие другие разные полезности. Кто желает глубоко погрузиться в тему, — изучайте приложение. Но имейте ввиду, в бытовой, слушательской практике, такие точные измерения не несут ни какого смысла. А вот для разработчиков аудиосистем программа Arta Software очень весьма полезная и даже необходимая.

Ниже мы приводим полное руководство по работе с программой Arta Software .

Приложение. (TrueRTA и Arta Software)

Описание TrueRTA.

Анализатор аудио спектра TrueRTA, работает в режиме реального времени, отлично подходит для настройки амплитудно-частотных характеристик акустических систем в различных помещениях и залах. Программное обеспечение включает в себя целый набор инструментов, в частности, спектральный анализатор реального времени (Real Time Analyzer), двойной осциллограф, генератор сигналов, цифровой измеритель уровня и коэффициента амплитуды сигнала или крест-фактора. Интерфейс приложения крайне прост и удобен, все настройки могут быть развернуты в виде панелей на основном рабочем окне.

Программное обеспечение предоставляет возможность самостоятельно настраивать масштабы, параметры и диапазоны звуковых измерений, проводит обработку и усреднение входных данных, имеет функцию фиксации пиков. Сигнал на экране осциллографа может быть остановлен в любой момент времени и прокручен в разные стороны. Также предлагается пять различных цветовых схем для графической области окна.

Полученные с помощью TrueRTA измерения позволяют детально и «на лету» оценить акустику, определить нелинейные искажения, проверить правильность расчетов разделительных фильтров. Максимальное разрешение достигает 1/24 октавной полосы. Программа позволяет выявить не только спектральный состав гармоник, но и просчитать коэффициент нелинейных искажений для каждой из них. Расчет уровня гармоник в приложении необходимо проводить вручную.

Кроме того программа TrueRTA может генерировать аудио сигналы любой частоты (в пределах от 1 до 22000 Гц) и амплитуды. Приложение позволяет проводить замеры белым шумом, розовым шумом (стандартным для акустических измерений) или синусоидальным сигналом. Результаты измерений можно распечатать или сохранить в ячейках памяти, а затем сравнить между собой. Последние версии софта имеют возможность определять импульсные характеристики звуковых сигналов.

Описание Arta Software.

Проверка измерительного тракта.

Перед началом непосредственно измерений необходимо удостовериться, что используемый измерительный тракт обладает достаточной линейностью. Для этого производится подключение оборудования по схеме.

Запускаем Arta. Откроется окно, называемое окном импульсной характеристики (Impulse Response).

Стандартный темный интерфейс можно поменять на светлый с помощью функции меню Edit – B/W background color. Также я изменяю стандартную цветовую гамму через меню Edit – Colors and grid style.

Первым делом производится настройка программы. Для этого переходим в меню Setup – Audio devices.

В полях Input Device и Output Device указывается используемая звуковая карта. В поле WaveFormat выбирается разрядность цифровых данных, с которыми будет работать звуковая карта. Разработчики Arta Software рекомендуют использовать 24 или 32 bit, но только в том случае, если используемая звуковая карта является высококачественной. Мотивируют это справедливо – далеко не все звуковые карты, предназначенные для работы с разрядностью данных 24 bit, обладают линейностью на уровне хотя бы 16 bit. Также возможно появление сообщения об ошибке при запуске измерений, если звуковая карта не поддерживает указанную в поле WaveFormat разрядность. При выборе 24 либо 32 bit автоматически устанавливается галочка Extensible. Снимать ее не нужно, иначе при запуске измерений программа выдаст ошибку. Все остальные поля предназначены для работы с калиброванным измерительным комплексом, поэтому я их пропускаю. Выполняем установки и нажимаем ОК.

Переходим в меню Setup – Calibrate devices

Это меню предназначено для калибровки измерительного комплекса. Нас интересует только раздел Soundcard full scale output (mV). Здесь нажимаем кнопку Generate sinus (400Hz) и устанавливаем на выходе усилителя необходимое для теста напряжение. Никаких критических требований к величине этого напряжения нет, просто устанавливается не большая и не маленькая величина. Я установил по вольтметру 0.7041 v. Обратите внимание, что в поле Output level установлено значение -3 dB. После установки нажимаем повторно кнопку (теперь уже с надписью Stop Generator) и закрываем окно.

Переходим в меню Setup – Analysis parameters

Здесь все установки нам подходят, за исключением FFT length. Это значение необходимо изменить на 16384. Именно такое, поскольку в дальнейшем при измерениях я буду использовать количество сэмплов тестового сигнала – 16384. Когда потребуется сменить (при измерениях зависимости нелинейных искажений от частоты), я об этом упомяну. Вообще, желательно, чтобы размер FFT всегда совпадал с количеством сэмплов тестового сигнала.

Переходим в меню Record Impulse response/Signal time record (6). Выбираем вкладку Periodic Noise, если она не выбрана.

Здесь, в поле Sequence length (количество сэмплов на период тестового сигнала), устанавливаем значение 16k (16384). При использовании частоты дискретизации 96 kHz, период составляет 16384/96000 = 170.67 ms, что в 3.4 раза больше значения, необходимого для измерения нижней границы звукового диапазона – 20 Гц. Увеличивать период, значит не только расширение полосы частот вниз, но и увеличение разрешения по частоте. При акустических измерениях платой за это выступает насыщение измеренного сигнала поздними отражениями помещения. На остальных полях сейчас не буду заострять внимание, вернемся к ним позже, при непосредственно акустических измерениях. Пока производим установку параметров согласно изображению и нажимаем кнопку Generate. Внизу, на индикаторе уровня, отобразятся уровни входных сигналов. С помощью доступных регулировок чувствительности устанавливаем значения в диапазоне -20…-10 dB, после чего отключаем генерацию повторным нажатием кнопки. Теперь нажимаем кнопку Record. После завершения измерений окно закроется автоматически.

Если все прошло успешно, в окне импульсной характеристики должен наблюдаться импульсный отклик системы.

Для работы с окном импульсной характеристики в Arta используются курсор и маркер. Курсор устанавливается левой кнопкой мыши и определяет начало временнОго окна. Маркер устанавливается и удаляется правой кнопкой мыши и определяет конец временного окна. ВременнАя разница между положениями курсора и маркера – это окно измерений (Gate). Из информации, что находится внутри этого окна, производится расчет графиков АЧХ, ФЧХ, ГВЗ, кумулятивного спектра и графика распада. Остальные графики отображают результаты измерений на основе полного периода тестового сигнала. Внизу окна Impulse Response отображена позиция курсора, ей соответствует 0 ms, 0 сэмплов. В данном случае эта позиция и требуется. Для вычисления фазовой характеристики необходимо установить значение задержки от положения курсора до максимума импульса. С помощью расположенных справа кнопок Gain, Zoom и Scroll устанавливаем вид импульса так, чтобы были видны позиции сэмплов, после чего устанавливаем маркер в центр импульса и нажимаем на панели инструментов кнопку Get. В поле Delay for phase estimation (ms) должно отобразиться значение задержки.

С помощью кнопки Zoom делаем видимым все окно измерений (170 ms) и устанавливаем маркер в самом его конце. У меня длина окна измерений (Gate) соответствует 170.469 ms (16365 сэмплов). Теперь можно просмотреть результаты измерений. Сейчас нас интересует только линейность АЧХ и ФЧХ, поэтому нажимаем на панели инструментов кнопку с буквами FR (либо через меню выбираем Analysis – Single-gated smoothed Frequency response/Spectrum). Откроется окно Smoothed frequency response.

Слева внизу расположены четыре кнопки, – Mag, M+P, Ph и Gd. Они отвечает за отображение графиков соответственно АЧХ, АЧХ+ФЧХ, ФЧХ и ГВЗ. Справа на панели, в поле Smoothing, можно выбрать сглаживание графика. Левой кнопкой мыши на графике производится установка курсора, а правой – открываются свойства графика. Более подробно к этому, а также к ряду других возможностей, я вернусь позже. Сейчас же результат получен, и можно видеть полную пригодность измерительного тракта для проведения измерений импеданса и акустических измерений.

Пока есть результат измерений, можно самостоятельно ознакомиться с меню программы и просмотреть, как выглядят графики для системы, идеальной относительно динамиков. Например, переходная характеристика. Программа не умеет отправлять на принтер результаты измерений и не умеет экспортировать их в графический формат, но позволяет перенести в буфер обмена. Для этого в каждом окне доступна кнопка Copy (либо через меню Edit – Copy). Посленажатия откроется окно Copy to Clipboard.

В текстовом поле можно написать любые комментарий к графику, а в поле Choose bitmap size выбрать из списка размер изображения. Галочка Add filename and date добавляет к графику имя файла импульсной характеристики и текущую дату. Для примера, результат показан ниже .

Для проведения акустических измерений возможно использовать одно или двухканальную схемы:

Рекомендуется работать с двухканальной схемой измерений, но в случае использования встроенного в звуковую карту предварительного усилителя для микрофона, подключенного к входу Line In, использовать двухканальную схему не получится.

Одноканальный же метод обладает недостатком – в Arta не определена опорная позиция курсора. Некоторое время я вынужден был использовать одноканальную схему измерений, поэтому пришлось искать метод определения этой позиции. Такой метод был найден. Возможно, он не самый лучший и не самый правильный, но другого метода найти не удалось. Детально об этом расскажу чуть позже. Сейчас же подключаем оборудование в соответствии с выбранной схемой измерений и располагаем перед измеряемым динамиком стойку с микрофоном. Для комплексных измерений динамиков для будущей акустической системы расстояние до микрофона следует выставлять одинаковым и в процессе измерений не производить изменение выходного напряжения усилителя.

Для измерений АС в дальнем поле, чтобы упростить процедуру установки микрофона строго на оси ВЧ излучателя, рекомендую использовать лазерную указку. По ходу написания материала я буду проводить измерение в ближнем поле (расстояние между микрофоном и динамиком составляет приблизительно 20 см) широкополосного динамика 4А28 без акустического оформления. Почему я не указываю точного значения напряжения на выходе усилителя и не придерживаюсь строгого расстояния между динамиком и микрофоном. Все просто. Для измерения абсолютных величин звукового давления требуется либо калиброванный измерительный микрофон, либо самостоятельное выполнение процедуры калибровки по динамику, на который есть результаты измерений, полученные с помощью калиброванного измерительного комплекса. Использовать как эталон значение чувствительности динамика, рассчитанное вместе с остальными параметрами Тиля-Смолла, нельзя. Это значение имеет слишком мало общего с реальной чувствительностью динамика, и тем более с его АЧХ. Придерживаться конкретной величины напряжения, подводимого к динамику, следует в том случае, когда проводится измерение зависимости нелинейных искажений от частоты.

Запускаем Arta. Откроется уже знакомое окно импульсной характеристики. Проверяем и при необходимости корректируем установки в меню Setup – Audio devices. С помощью генератора синусоидального сигнала 400 Hz, доступного через меню Setup – Calibrate devices, производим установку требуемого напряжения на выходе усилителя. Проверяем установки в меню Setup – Analysis parameters. Переходим в меню Record – Impulse response/Signal time record, открываем вкладку Periodic Noise. Это меню частично уже знакомо. В поле Sequence length производится установка количества сэмплов на период тестового сигнала, в поле Sampling rate (Hz) – частота дискретизации (Fs). В поле Noise spectrum выбирается тип периодического шумового сигнала: White (белый), Pink (розовый) и Speech (речевой). В поле Output volume устанавливается уровень тестового сигнала. Поле Pink cutoff (Hz) изменяет частоту среза при использовании розового шума. Справа, в поле Prefered input выбирается измерительный канал. В данном случае это канал, к которому подключен микрофон. В обеих схемах измерения (Figure 27 и Figure 28) в качестве измерительного используется левый (Left) канал. Установка галочки Dual channel measurement mode задействует двухканальный метод измерений. Галочка Invert phase of input channel служит для изменения фазы входного сигнала на 180 градусов. Это требуется, если подключение измеряемого динамика произведено с обратной полярностью.

В поле Number of averages указывается количество измерений, из которых методом усреднения будет рассчитана импульсная характеристика. При акустических измерениях рекомендую устанавливать число измерений не менее 10. Это хорошо помогает снизить погрешность измерений за счет меньшей чувствительности к посторонним случайным шумам. Галочка Frequency domain 2Ch averaging отвечает за дополнительное усреднение при двухканальном методе измерений, а галочка Filter dual channel impulse response – за фильтрацию в области частот Fs/2. На вкладке Sweep (свип-тон) окна Impulse response measurement галочка Log-frequency sweep позволяет выбрать изменение тона тестового сигнала по линейному или логарифмическому закону, а галочка Generate voice activation включает генерирование короткой тональной посылки перед тестовым сигналом. Галочка Center peak of impulse response недоступна при двухканальных измерениях. Она отвечает за положение импульса точно посередине периода тестового сигнала. Это требуется при измерениях зависимости нелинейных искажений от частоты. Установка галочки Close after recording, доступной при открытии любой вкладки, обеспечит закрытие окна Impulse response measurement по завершении процесса измерений.

Поскольку при двухканальных измерениях есть возможность автоматического расчета величины задержки, начнем с одноканального метода измерений. Какие действия необходимо произвести при двухканальных измерениях, — чуть позже.

Переходим на вкладку Periodic Noise меню Impulse response measurement и выполняем требуемые установки. Пример (29):

Включаем генератор шума нажатием кнопки Generate и регулировкой чувствительности устанавливаем уровень входного сигнала в диапазоне -20…-10 dB. Напоминаю, что используется только левый канал, к которому подключен микрофон. По завершению установки выключаем генератор повторным нажатием кнопки Generate. Теперь запускаем измерения нажатием кнопки Record. После завершения процесса измерений возвращаемся в окно импульсной характеристики (автоматически, либо самостоятельно).

Теперь самое время рассказать более детально о главном недостатке одноканальных измерений – неопределенной опорной позиции курсора. С одной стороны никаких проблем – устанавливаем курсор перед импульсом, а маркер в максимум импульса и получаем задержку для расчета ФЧХ. Это так, но некорректная установка курсора резко проявляется на графике кумулятивного затухания спектра (Cumulative Spectral Decay). Вот как раз с помощью него мы и определим опорную позицию курсора. Насколько такой метод корректен, можно будет сделать вывод позже на основании результатов измерений двухканальным методом. Итак, смотрим на получившийся график импульсной характеристики (30).

Сейчас курсор установлен в позицию 0 ms (0 samples), так и оставляем. Маркер устанавливаем сразу после импульса. В примере он стоит на отметке 4.646 ms. Чтобы избежать присутствия в сигнале ранних отражений, не устанавливайте маркер слишком далеко. Оптимальное временное окно – 4…5 ms. Нажимаем кнопку с буквами CS на панели инструментов или выбираем в меню Analysis – Cumulative spectrum. Откроется окно Cumulative Spectrum Setup (31). Этот график сокращенно называют CSD (Cumulative Spectral Decay).

Галочка Log frequency axis отмечается, если требуется логарифмическая шкала частотного диапазона. Галочка Remove antialiasing range включает фильтрацию составляющих частотного диапазона в области Fs/2. dB range (10 – 70) и Maximum frequency (Hz) устанавливают соответственно отображаемый на экране динамический диапазон и верхнюю частоту. Поле Smoothing устанавливает сглаживание, а галочка Use FR compensation задействует компенсацию АЧХ, установленную в меню Setup – FR compensation (по понятным причинам я об этом меню не рассказывал). В правой части окна верхнее поле переключает тип анализа. При работе с импульсным откликом автоматически устанавливается тип Analyse as CSD using apodizing window. В поле FFT length (in samples) устанавливается количество сэмплов в блоке FFT. В случае если длина временного окна в сэмплах меньше FFT lenght/2, при запуске анализа программа выведет предупреждение. В поле FFT block shift (in samples) указывается длительность временной шкалы в сэмплах, а в поле Max. number of FFT blocks – количество блоков FFT, входящих во временную шкалу. В поле Apodizing window rise time (0.02-1 ms) указывается время открытия и закрытия окна анализа. Величина 0.2ms – это некоторый оптимум при анализе характеристик как в области низких, так и в области высоких частот. Производим установки и нажимаем OK.

Если наблюдается картина, подобная как на графике 32, необходимо увеличить временную шкалу (FFT block shift).

При использовании корректных настроек CSD, график должен выглядеть подобным образом (Fig 33).

Из графика видно наличие блоков FFT с одинаковым содержимым. Это следствие некорректной установки курсора в окне импульсной характеристики – позиция курсора находится слишком рано по отношению к импульсу. Если же установить курсор в такую позицию, которая «отсечет» полезные данные, в окне CSD будет происходить анализ самих резонансных процессов, без сигнала их порождающего. Отразится это и на графике АЧХ. Поскольку на графике Waterfall не слишком удобно выражена временная шкала, предлагаю переключиться на сонограмму – в поле Mode выбираем Sonogram — 34.

Здесь более наглядная временная шкала. Чтобы улучшить разрешение, отмечаем галочку Grid, а в настройках CSD станавим меньшую временную шкалу. Изменив настройки, выводим график — 35.

Видно, что спектр сигнала не содержит изменений до приблизительно 2.75 ms. Это и есть искомая позиция курсора. Закрываем окно. В окне импульсной характеристики устанавливаем курсор в позицию 2.75 ms (около этого значения), а маркер – в максимум импульса, получив тем самым значение задержки (36).

Здесь будет небольшое отступление по поводу максимума импульса. Как можно видеть выше, положение максимума импульса можно принять другим, если «развернуть» импульсную характеристику на 180 градусов. В таком случае максимум импульса окажется чуть дальше по времени. Это некорректная установка и она обязательно отразится на фазовой характеристике. Чтобы убедиться в том, что импульсная характеристика имеет «положительный» отклик, воспользуемся графиком переходной характеристики. Нажимаем на панели инструментов кнопку с надписью STEP, либо выбираем в меню Analysis – Step response. Откроется окно Step response (37).

Можно видеть, переходная характеристика имеет «положительный» фронт. Если же переходная характеристика имеет «отрицательный» фронт (38), то необходимо в окне импульсной характеристики изменить фазу импульсного отклика с помощью кнопки Inv, расположенной на панели инструментов (либо через меню Edit – Invert). Можно провести повторное измерение, изменив полярность подключения динамика, либо повторное измерение с установленной галочкой Invert phase of input channel в окне — Impulse response measurement.

Вернемся к окну импульсной характеристики. Установили курсор, маркер и получили значение задержки. Теперь устанавливаем с помощью маркера окно измерений (Gate) около 4…5 ms (39).

Открываем окно CSD, производим установки и получаем результат (40).

Убедиться в том, что график CSD отображается корректно, можно посмотрев график АЧХ (41).

Далее возвращаемся в окно импульсной характеристики. Установка курсора произведена, задержка рассчитана, теперь можно выбрать позицию маркера, определив тем самым окно измерений и нижнюю граничную частоту при анализе характеристик. Сейчас у меня произведено измерение в ближнем поле, поэтому я могу установить окно измерений длинным – около 50ms – и получить при анализе нижнюю граничную частоту 20Hz. Но когда производятся измерения в дальнем поле, либо помещение обладает неудовлетворительными акустическими свойствами, окно измерений желательно ограничивать еще до прихода первых отражений. Как их распознать в окне импульсной характеристики, показано на примере результата измерения ВЧ излучателя в дальнем поле (42).

На изображении 42 курсор установлен в позицию, которая отображает границу чистого импульсного отклика. После курсора следуют отражения – ранние и поздние. Ранние отражения очень хорошо видны как повторяющийся три раза импульс. Поздние отражения имеют существенно большую амплитуду, в редких случаях даже сравнимую с амплитудой главного импульсного отклика.

Итак, определяем окно измерений. Для примера установили на 56.594 ms (5433 сэмпла). Теперь можно переходить к анализу результатов измерений и их экспорту в формат, поддерживаемый CAD-системами. Импульсную характеристику можно сохранить в формате Arta (*.pir), либо экспортировать в текстовый формат. Для анализа доступны следующие графики: АЧХ, ФЧХ, ГВЗ, ПХ, график зависимости энергии импульса от времени, кумулятивное затухание спектра и график распада. Для графиков АЧХ, ФЧХ и ГВЗ есть дополнительные меню, позволяющие просмотреть графики без сглаживания и меню с возможностью построения графиков с использованием двух временнЫх окон.

Кнопка с буквами FR, расположенная на панели инструментов, открывает меню Smoothed frequency response (через меню – Analysis – Single-gated smoothed Frequency response/Spectrum) – (43).

Внизу слева расположены кнопки Mag, M+P, Ph и Gd. С помощью них открываются графики соответственно АЧХ, АЧХ+ФЧХ, ФЧХ и ГВЗ. Справа в поле Smoothing из списка выбирается характеристика сглаживания. Щелчок правой кнопкой мыши на графике открывает экранное меню, где можно установить динамический и частотный диапазоны измерений. В меню File – Export… возможен экспорт результатов измерений в текстовый формат. Меню Overlay управляет слоями с кривыми. Можно «закрепить» на графике кривую для построения комбинированного графика. Например, для сравнения АЧХ на главной оси и с отклонением от оси (44).

С помощью пункта меню Edit – Scale level производится нормализация кривых (на приведенном выше графике кривые сначала нормализованы на частоте 100Hz и только потом совмещены). Меню LF box diffraction служит для компенсации так называемого «баффла». Фазовая характеристика может быть отображена как минимальная фаза (Minimum phase), избыточная фаза (Excess phase) или измеренная фаза (галочки с минимальной и избыточной фазы сняты). Активирование пункта Unwrap Phase отключает на графике ФЧХ «переворот» фазы при достижении значения -180 или 180 градусов. ГВЗ может быть рассчитано из избыточной фазы (пункт Excess group delay активирован) или из измеренной фазы (Excess group delay не отмечен).

Графики АЧХ, ФЧХ и ГВЗ возможно вывести с использованием комбинированного метода с двумя временнЫми окнами (Analysis – Dual-gated smoothed frequency response или кнопка с буквами 2FR на панели инструментов). Для этого в меню Setup – Analysis parameters (5) в полях Gate1 и Gate2 необходимо указать длительность каждого окна. В поле Gate1 возможна установка значений из диапазона 5…60 ms, а в поле Gate2 – 70…300ms.

Меню Analysis – Unsmoothed DFT frequency response/Spectrum или нажатие кнопки DFT на панели инструментов позволяет просмотреть графики АЧХ, ФЧХ и ГВЗ без сглаживания (45).

График распада (в меню Analysis – Burst decay или на панели инструментов кнопка BD) выглядит похожим на график CSD. Отличие их заключается в методе анализа. Разработчики Arta Software рекомендуют анализировать оба графика. В общем, по графику кумулятивного спектра хорошо видно наличие резонансов, но именно ярко выраженные резонансы нагляднее отображаются на графике Burst Decay (46 и 47).

Для оценки нелинейных искажений динамика, можно провести измерение зависимости уровня нелинейных искажений от частоты (меню Analysis – Frequency response and distortions). Для этого сначала переходим в меню Setup – Analysis parameters и в поле FFT length выбираем значение 131072. В окне Impulse response measurement переходим на вкладку Sweep. Если задействован двухканальный метод измерений, отключаем его и устанавливаем галочку Center peak of impulse response. В поле Sequence length выбираем значение 128k. Запускаем процесс измерений. Для примера, ниже (48) показан график нелинейных искажений широкополосного динамика 4А28 при подводимой мощности 1 Вт (3.46 v и нагрузке 12 Ом).

График отображает не суммарный уровень искажений, но отдельно гармоники. Если требуется знать THD, придется самостоятельно перевести децибелы в проценты и вычислить коэффициент гармоник. Проделав эту процедуру мы получим следующие результаты. THD на частоте 100 Hz составляет 1.535 %, на частоте 1 kHz – 1.937 %, на 10 kHz – 2.147 %.

Теперь о двухканальных измерениях. Производим подключение оборудования по схеме (28). В меню Setup – Calibrate devices (Figure 4) производим установку напряжения на выходе усилителя, а в меню Record – Impulse response/Signal time record (Figure 6) на вкладке Periodic Noise устанавливаем уровни входных сигналов в диапазоне -20….-10dB. При двухканальных измерениях Arta может самостоятельно определять задержку для расчета фазы. Я пользуюсь автоматическим расчетом только в том случае, если в окне импульсной характеристики невозможно определить положение максимума импульса. Это бывает, когда измеряется НЧ динамик с подключенным ФНЧ. Определение задержки производится в другом окне Arta – Dual channel – frequency response. Чтобы переключиться к нему, в меню Mode необходимо выбрать Dual channel – frequency response или на панели инструментов нажать кнопку Fr2. Окно Impulse response сменится (49).

Далее переходим в меню Setup – Measurement (50).

В поле FFT size указываем размер блока FFT – 16384, в поле Sampling rate – частоту дискретизации. Отмечаем галочку Phase, а в поле Prefered input channel выбираем канал, к которому подключен микрофон. В поле Propagation delay обязательно устанавливаем значение 0. На панели инструментов в поле Gen устанавливаем значение PN pink и проводим измерение (51).

Фазовая характеристика, из-за отсутствия величины задержки, отображается с ошибкой. Автоматическое определение задержки производится через меню Record – Crosscorrelation/delay estimation (52).

В поле Delay (ms) отображается значение задержки. Чтобы использовать это значение, достаточно нажать кнопку Accept. Происходит возврат в окно Fr2, где в поле Delay(ms) автоматически заносится значение задержки. Проводим измерение повторно (53).

Теперь фазовая характеристика измерена корректно. Запоминаем в буфере обмена значение задержки, указанное в поле Delay(ms), и переходим в окно импульсной характеристики (кнопка Imp на панели инструментов или в меню Mode – Impulse response/Signal time record). При переключении программа предложит преобразовать результат измерений Fr2 в импульсную характеристику (54).

Можно согласиться, можно отказаться. Непринципиально, поскольку при конвертировании нарушается позиция, определенная как опорная для курсора при двухканальных измерениях. Поэтому измерение необходимо провести еще раз, но теперь уже через меню Record — Impulse response/Signal time record (Figure 6). Настраиваем поля для двухканального метода и проводим измерения. В окне импульсной характеристики опорная позиция курсора для двухканальных измерений определена точно — 300 сэмплов. Устанавливаем курсор в эту позицию, в поле Delay for phase estimation (ms) устанавливаем значение задержки, полученной при измерениях в Fr2. Осталось установить длину измерительного окна и можно приступать к анализу и экспорту (55).

Для сравнения, на графиках 56 и 57 представлены графики CSD при измерении соответственно одноканальным и двухканальным методами. На графике 58 синим цветом показана ФЧХ при измерении двухканальным методом, красным – при одноканальном методе. Разница явно небольшая.

Замечательная программа. Несущая в себе безграничные возможности для занятия всего вашего досуга.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Как снять ачх колонки

ishyfaq.ru

Снятие ачх колонки может показаться сложной задачей для новичков, которые только начинают заниматься музыкой или озвучиванием. Однако, с правильной инструкцией и немного практики, эту задачу можно легко выполнить. В этой статье мы расскажем вам, как правильно снять ачх колонки, чтобы получить отличное звучание и предотвратить возможные проблемы.

Шаг 1: Подготовка

Перед тем, как приступить к снятию ачх колонки, необходимо подготовиться. Убедитесь, что у вас есть все необходимое оборудование и инструменты, такие как ачх-метр, кабели, наушники и прочее. Также рекомендуется проверить состояние колонки и возможные проблемы, которые могут вызвать неправильное звучание.

Шаг 2: Проверка ачх колонки

Перед началом снятия ачх колонки необходимо проверить её состояние. Включите колонку и внимательно прослушайте звук. Если вы обнаружите какие-либо искажения или проблемы с звучанием, попробуйте исправить их или обратитесь за помощью к специалисту. Некорректная работа ачх колонки может сказаться на качестве звучания.

Шаг 3: Настройка ачх-метра

Ачх-метр представляет собой специальное устройство, которое позволяет измерить частотную характеристику колонки. Перед началом снятия ачх колонки необходимо настроить ачх-метр, чтобы получить точные измерения. Следуйте инструкциям по настройке, которые предоставляются вместе с ачх-метром или обратитесь за помощью к специалисту.

Следуя этой подробной инструкции, вы сможете правильно снять ачх колонки и настроить их для получения отличного звучания. Не забывайте, что настройка ачх колонки требует определенных знаний и навыков, поэтому не стесняйтесь обратиться за помощью к специалистам, если у вас возникнут сложности. Удачи вам!

Как снять АЧХ колонки

АЧХ колонки – это амплитудно-частотная характеристика, которая позволяет оценить, как звучит колонка на различных частотах. Если вы хотите снять АЧХ колонки, вам потребуется следующее оборудование и материалы:

  1. Акустический измеритель (например, микрофон).
  2. Аудиоинтерфейс или звуковая карта.
  3. Компьютер.
  4. Софтверная программа для анализа звука (например, Audacity).
  5. Колонка, с которой вы планируете работать.
  6. Кабели для подключения аудиоинтерфейса и колонки.

Чтобы снять АЧХ колонки, выполните следующие шаги:

  1. Подготовьте акустический измеритель и аудиоинтерфейс. Подключите микрофон к аудиоинтерфейсу и аудиоинтерфейс к компьютеру.
  2. Установите и настройте софтверную программу для анализа звука на компьютере.
  3. Разместите микрофон перед колонкой на одном уровне с динамиками колонки.
  4. Включите колонку и убедитесь, что она работает на нормальной громкости.
  5. Запустите запись звука через софтверную программу на компьютере.
  6. Воспроизведите звуковой сигнал разных частот через колонку (например, с частотой 20 Гц, 50 Гц, 100 Гц и т.д.) и дайте программе проанализировать звуковой сигнал.
  7. Просмотрите результаты анализа звука и изучите полученные данные АЧХ колонки.

После выполнения этих шагов вы сможете получить АЧХ колонки и использовать полученные данные для настройки звука и оптимизации ее работы. Помните, что снятие АЧХ колонки может быть сложным процессом, требующим определенных навыков и знаний о звуке и акустике.

Этап 1: Подготовка к снятию ачх колонок

Перед тем, как приступить к снятию ачх колонок, необходимо провести некоторую подготовку. В этом разделе мы расскажем о необходимых шагах, которые нужно выполнить перед началом работы.

1. Определите место работы. Выберите подходящее место для снятия ачх колонок. Лучше всего подойдет просторное помещение с минимальным количеством отражающих поверхностей. Такое помещение поможет избежать паразитных отражений и получить наиболее точные результаты.

2. Подготовьте необходимые инструменты. Для снятия ачх колонок вам потребуются специальные аппараты и инструменты. В список необходимых инструментов могут входить ачх анализатор, микрофон, стойка для микрофона, кабели, ноутбук или компьютер и программное обеспечение для анализа звука.

3. Убедитесь в исправности оборудования. Перед началом работы проверьте каждый инструмент, чтобы убедиться в его исправности. Удостоверьтесь, что все аппараты работают без сбоев и выдает точные результаты.

4. Запланируйте время. Снятие ачх колонок может занять продолжительное время, особенно если вы это делаете впервые. Поэтому запланируйте достаточно времени для выполнения задачи и не спешите.

Этап 2: Отключение и разборка ачх колонок

Перед тем как начать разбирать ачх колонки, необходимо их отключить от источника питания и получить доступ к внутренним элементам. Следуйте инструкциям ниже, чтобы правильно выполнить этот этап.

  1. Отключите ачх колонки от источника питания: перед тем как начать разборку ачх колонок, убедитесь, что они полностью отключены от розетки или аккумулятора. Это гарантирует безопасность при работе с электрическими компонентами.
  2. Удалите облицовку ачх колонок: чтобы получить доступ к внутренним элементам, снимите облицовку с ачх колонок. Обычно она прикреплена с помощью винтов или защелок. Внимательно осмотрите колонку и найдите все крепления, затем аккуратно их отсоедините или открутите.
  3. Откройте корпус ачх колонок: после того, как облицовка удалена, вы увидите корпус ачх колонок. Часто он сделан из пластика или дерева. Для открытия корпуса может потребоваться отвертка или специальный инструмент. Будьте аккуратны, чтобы не повредить корпус или внутренние компоненты.
  4. Идентифицируйте внутренние элементы: после открытия корпуса, вы должны увидеть различные внутренние элементы ачх колонок, такие как динамики, провода, платы и разъемы. Ознакомьтесь с их расположением и обозначениями.
  5. Отсоедините провода: чтобы разобрать ачх колонки полностью, необходимо отсоединить провода, подключающие различные элементы. Обычно провода подключены к разъемам или пайкой. Отключайте их аккуратно, записывая или помечая, какой провод откуда идет. Это поможет вам правильно собрать ачх колонки в будущем.
  6. Разберите динамики и другие элементы: после того, как провода отсоединены, можно разбирать другие элементы, такие как динамики, платы и разъемы. Часто они прикреплены с помощью винтов или защелок. Откручивайте или отщелкивайте их осторожно, чтобы не повредить компоненты.
  7. Осмотрите и чистите элементы: когда все элементы разобраны, оцените их состояние. Проверьте наличие повреждений или износа. Если вы замечаете какие-либо проблемы, можно заменить поврежденные или изношенные элементы. Также рекомендуется очистить элементы от пыли и грязи с помощью мягкой щетки или компрессированного воздуха.

После выполнения всех указанных шагов, вы полностью разобрали ачх колонки и готовы приступить к очистке, ремонту или замене элементов. Будьте аккуратны во время разборки и помните об особенностях своей модели ачх колонок.

Этап 3: Правильное хранение и уход за ачх колонками

После снятия ачх колонок необходимо правильно их хранить и ухаживать, чтобы сохранить их в хорошем состоянии и продлить срок их службы.

При хранении ачх колонок важно соблюдать следующие рекомендации:

  • Храните колонки в сухом и прохладном месте, чтобы избежать повреждения от влаги и перегрева.
  • Избегайте хранения колонок рядом с источниками тепла, такими как радиаторы или печи.
  • Поддерживайте хороший воздухообмен в помещении, где хранятся колонки, чтобы избежать скопления пыли и грязи.
  • Если у вас есть специальный чехол или контейнер для хранения колонок, используйте его для защиты от пыли и повреждений при транспортировке.
  • Не ставьте предметы на колонки при их хранении, чтобы избежать деформации и повреждений.

Для правильного ухода за ачх колонками рекомендуется следовать таким рекомендациям:

  • Регулярно очищайте колонки от пыли и грязи, используя мягкую сухую тряпку или специальную щетку для аудиооборудования.
  • Не используйте жидкие чистящие средства или воду для очистки колонок, чтобы избежать повреждения электроники и акустики.
  • Проверяйте состояние подключений и кабелей регулярно и исправляйте возможные неисправности.
  • Не допускайте попадания жидкости на колонки.
  • Не разбирайте и не вмешивайтесь во внутренние компоненты ачх колонок без необходимых навыков и знаний.

Соблюдение правильного хранения и ухода за ачх колонками поможет вам сохранить их в отличном состоянии и получить максимальное удовольствие от их использования на протяжении долгого времени.

Вопрос-ответ

Какие инструменты нужны, чтобы снять ачх колонки?

Для снятия ачх колонок вам потребуются следующие инструменты: отвертка, ключи для разъемов, переносной компьютер или смартфон для анализа ачх.

Какая техника безопасности нужна при снятии ачх колонок?

При снятии ачх колонок необходимо соблюдать следующие правила безопасности: отключить все источники питания, не работать с оборудованием во влажной среде, не прикасаться к голым проводам, обращаться с оборудованием осторожно.

Какие шаги нужно выполнить, чтобы снять ачх колонки?

Чтобы снять ачх колонки, выполните следующие шаги: 1. Отключите колонки от источника питания. 2. Отверните винты на задней панели колонок, чтобы освободить крышку. 3. Снимите крышку и обнаружьте динамик. 4. Отверните гайки или винты, держащие динамик. 5. Отсоедините провода от динамика. 6. Отверните фиксирующие гайки или винты и снимите динамик полностью.

Как проверить ачх колонки после снятия?

После снятия ачх колонок можно провести проверку с помощью специальных программ или приборов, которые анализируют частотный диапазон и амплитуду звуковых колебаний. Также можно включить колонки и проверить на слух их работоспособность и качество звука.

Можно ли снять ачх колонки без отвертки?

В большинстве случаев для снятия ачх колонок потребуется отвертка или другой инструмент с похожей функцией, чтобы отвернуть винты или гайки, держащие колонки. Однако, возможно, есть некоторые модели колонок, которые могут быть сняты без использования отвертки, в зависимости от их конструкции.

Какие могут быть причины снятия ачх колонок?

Причины снятия ачх колонок могут быть разными: необходимость замены или ремонта динамиков, проводов или других деталей, проведение анализа и настройки ачх для оптимального звучания, улучшение качества звука путем замены или установки дополнительных компонентов.

Как снять ачх усилителя с помощью компьютера

Прежде чем проверять динамики, колонки или наушники, убедитесь в том, что ваш усилитель (или стационарный, или встроенный в активные колонки, или звуковой карты компьютера) имеет достаточно хорошие технические характеристики (параметры). Т.е. насколько прямолинейна и широка его АЧХ, может ли он выдавать все частоты с одинаковым уровнем, без завала по низким частотам (чем часто грешат усилители низкого качества).

Заодно можно определить, развивает ли он заявленную изготовителем максимальную мощность (Pmax) и какое выходное сопротивление (Rвых) имеет.

Методика проверки амплитудно-частотной характеристики

Точно также проверяется и второй канал усилителя. В случае значительного спада сигнала на низких частотах желательно поменять усилитель на более качественный.

Измерение выходного сопротивления усилителя

Для его измерения в качестве нагрузки усилителя проводниками подключите резистор любого типа, сопротивлением 4 или 8ом соответствующей мощности. Параллельно выходу усилителя подключите вольтметр переменного тока (цифровой в данном случае удобнее стрелочного), и, подав с компьютера сигнал генератора звуковых частот (объём архива 22Кб.) на частоте 1000 герц регулятором громкости установите выходное напряжение в пределах от 1 до 5 вольт.

Таким образом можно определить выходное сопротивление и на втором канале, и на любой частоте.

Измерение максимальной мощности

Некоторые пользователи хотят знать, какую мощность реально выдают их усилители в нагрузку, не доверяя характеристикам, заявленным производителями. Это можно сделать, но вам понадобятся:

  1. мощный нагрузочный резистор
  2. генератор звуковых частот
  3. вольтметр переменного напряжения
  4. осциллограф.

Самое сложное, это купить или самостоятельно изготовить мощный нагрузочный резистор и найти осциллограф. В крайнем случае, в качестве осциллографа можно использовать компьютер или ноутбук с программой «Виртуальный осциллограф» из архива (объём 0,3 Мб.). Подробное описание его работы и схема адаптера (делитель напряжения для согласования входа звуковой карты компьютера с источником исследуемого напряжения) имеются в справке программы. Резистор можно изготовить из спирали древнего утюга, электрической плитки или тепловентилятора.

В один из каналов (левый или правый) вместо колонки в качестве нагрузки усилителя проводниками подключите резистор любого типа, сопротивлением, соответствующим расчётному сопротивлению нагрузки вашего усилителя. Оно указывается в инструкции на аппаратуру и обычно составляет 8 или 4ом. Мощность резистора должна быть достаточной, чтобы он не сгорел во время работы, т.е. не меньше предполагаемой выходной мощности усилителя (если усилитель заявлен на 100 ватт на канал, мощность резистора должна быть 100 ватт и больше).

Например, Umax=21v. R=4om. Pmax=21²/4=110ватт. Если R=8ом, то Рmax=55ватт.

Таким же способом можно проверить максимальную выходную мощность на нижней частоте АЧХ усилителя (20 герц.), или на нижней частоте частотного диапазона, указанного для ваших колонок, например 40, 45 или 50 герц. Ограничение синусоиды по амплитуде в идеале должно происходить строго симметрично, на обоих полуволнах сигнала.

ОТКРЫТА ТЕМА ПРО ИЗМЕРЕНИЯ ПИШЕМ ЗДЕСЬ. Потому что форум рухнул и потеряна тема Василича по измерениям.

НОВИЧКИ НАЧИНАЮЩИЕ ИЗУЧАТЬ ШМЕЛЁВА И СПЕКТРОЛАБ, НЕ ВЫКЛАДЫВАЙТЕ СКРИНЫ В ТЕМЕ, ПОКА НЕ НАУЧИТЕСЬ ИХ ПРАВИЛЬНО СНИМАТЬ,ПОКА НЕ ВЫСТАВИТЕ ШКАЛЫ ШМЕЛЁВА .
Усилитель настраиваем при мощности 25% от максимальной на наименьшие КНИ и ИМД.
Максимальная мощность усилителя лампового измеряется при 10% КНИ на эквиваленте нагрузки.
щщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщщ

Изображение

Изображение

Для измерения все генераторы отключаем красными кнопочками или ставим -200dB уровни в неиспользуемых генераторах,оставляем 1й генератор.

Изображение

Изображение

Изображение

шшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшш
Не забываем пр МИКШЕРЫ записи и воспроизведения

Изображение

Изображение

шшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшш
Вот рекомендации Василича по настройке и измерениям

КНИ это отношение самой большой по пику гармоники к основному тону . И величина КНИ ни о чём не говорит без осмысливания всего спектра. КНИ у усилителей с одной гармоникой и с тремя гармониками мало отличаются,если у того что с тремя, гармоника одна будет иметь амплитуду как и гармоника у того УНЧ ,что с одной гармоникой. Поэтому при настройке УНЧ стремимся сделать гармоники как можно меньше по амплитуде и плавно спадающий хвост по амплитуде , а для уменьшения ИМД как можно меньше их количество. Потому что Шмелёв в режиме настройки замеряет ИМД при однотоновом сигнале и измеряет ИМД не корректно , по количеству и массе всех гармоник, относительно основного тона,но нам и не нужно во время настройки абсолютное значение ИМД , достаточно относительного измерения,что б видеть увеличивается или уменьшается нелинейность УНЧ в данный момент настройки.При амплитуде гармоник меньше -60dB их влиянием можно пренебречь. Можете провести опыт. Подайте на вход УНЧ своего от генератора Шмелёва основной тон 1кГц величиной такой что б на выходе УНЧ было 2 вольта.и другими генераторами подмешивайте гармоники,чётные, нечётные на уровне -60dB, то есть что б на акустике было 2мв размах гармоник. Вы не услышите ни какого изменения окраски сигнала основного тона.
Поэтому в настроенных усилителях,если гармоники в них при измерении , будут ниже -60dB — звучание будет одинаковым,хоть какую лампу ставьте ,хоть с Марса. Вот поэтому что б не заморачиваться с гармоническим рядом,диссонансом — мы и делаем КНИ минимальными. Нет ни чего Эзотерического. Если изменился звук на слух — значит обязательно что то изменилось в сигнале подведённом к акустике и это изменение измеряется приборами. КНИ,ИМД,ряд гармоник,АЧХ ,демпфирование. Но изменения ниже -60-80dB ухо не может уловить. Вот почему мы и отсекаем при измерении всё что ниже -80dB по спектро анализатору. Потому что там уже микровольты идут и нановольты.
При реальных измерениях и настройке УНЧ нам важно в Он лайне контролировать КНИ , ИМД и настройками сделать их как можно меньше,одновременно визуально наблюдая за спектром гармоник и делая их плавно ниспадающими и как можно меньше хвост. КНИ и ИМД во время настройки усилителя отображаются справа в окошках и не важно что ИМД в данном случае мы измеряем на однотоновом сигнале, для настройки усилителя пойдёт этот способ,потому что от двухтонового он отличается незначительно. В последствии после настройки усилителя ,можете измерить ИМД действительные двухтоновым сигналом , выбрав набор этих тонов из забитых в меню предустановок и всеми 20ю способами измерения ИМД.В мире так и не пришли к единому мнению и существует около двадцати,а то и более способов измерения ИМД.

Например набор частот.

Быстрая установка часто используемых сигналов:

Смесь 60 Гц, -2 дБ и 7.00 кГц, –14 дБ IMD Test

Смесь 250 Гц, -2 дБ и 8.02 кГц, –14 дБ

Смесь 10.02 кГц, -6.02 дБ и 11.02 кГц, -6.02 дБ

Смесь 12.10 кГц, -6.02 дБ и 12.90 кГц, -6.02 дБ

Смесь 15.1 кГц, -12.04 дБ и 15.9 кГц, -12.04 дБ

Смесь 19 кГц, -12.04 дБ и 20 кГц, -12.04 дБ

Смотрим пример настройки УНЧ однотоновым сигналом и проверка ИМД двухтоновым.
Как видим результаты примерно одинаковы и чем больше ИМД будет на однотоновом,тем больше будет и на двухтоновом.

Не забываем откалибровать Селективный вольтметр Шмелёва,что б 0dB = 1 вольт было и тогда Шмелёв будет вам показывать правильно уровни сигнала и не придётся его измерять мультиметром который врёт на разных частотах и показывая разные значения.Калибруем в окошке Максимальная амплитуда , но сигнал калибровочный СРЕДНЕКВАДРАТИЧНЫЙ подаём. Тогда у вас совпадут показания в окошке с положением ПИКА сигнала на сетке поля Шмелёва в dB.

Изображение

Изображение

ЭТО ТАБЛИЦА ОБЪЯСНЯЮЩАЯ ЧТО ТАКОЕ ДЕЦИБЕЛ И ПОКАЗЫВАЮЩАЯ ОТНОШЕНИЯ ВЕЛИЧИН

Изображение

Последний раз редактировалось Radiomann Пт янв 18, 2013 3:14 am, всего редактировалось 2 раза.

Кутник Фёдор Фридрихович.
Ищу заднюю крышку VEF-Spidola или Spidola. Можно корпус-донор.

Гость Vasilij

Вы публикуете как гость. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Последние посетители 0 пользователей онлайн

Объявления

Вот я себе один раз сохранил, и теперь есть где найти ответ: Типовая схема включения для «MOC3081M, MOC3082M, MOC3083M 6-Pin Zero-Cross Optoisolators Triac Driver Output» Резистор R: «A calculation for the current limiting resistor R is shown below for a typical 220 volt application: Assume the line voltage is 220 volts RMS. Also assume the maximum peak repetitive drive current (normally for a 10 micro second maximum time interval is 1 ampere). One should select a standard resistor value >311 ohms — 330 ohms. R=220V*1.41/1A=311ohm Обычно ставят 330 Ом Резистор Rg: «The gate resistor Rg (also shown in Figure 7) is only necessary when the internal gate impedance of the triac or SCR is very high which is the case with sensitive gate thyristors. These devices display very poor noise immunity and thermal stability without Rg. The value of the gate resistor in this case should be between 100 and 500. The circuit designer should be aware that use of a gate resistor increases the required trigger current (Igt) since Rg drains off part of Igt. Use of a gate resistor combined with the current limiting resistor R can result in an unintended delay or phase shift between the zero-cross point and the time the power triac triggers.» Т.е. его ставят при большом сопротивлении управляющего электрода, чтобы исключить помехи. Есть такое понятие как Оff-state leakage current (Ток утечки в выключенном состоянии) который, например равен до 0,5мА, ну и резистор выбирается из расчета, чтобы напряжение на управляющем электроде не превысило 0,1-0,2в те 0,2/0,0005=400ом. Обычно ставят 330-360ом.

имеется различная мощность. например для бриг 001с (третья ревизия) в ттх имеется: потребляемая мощность — 150 вт. выходная номинальная мощность 2х50 вт. и пиковая мощность на канал (максимальная мощность) 75 вт. можно разделить каждый канал по полосам (нч,сч,вч) но все равно — выходная останется 2х50. можно разделить на входе усилителя и на выходе поставить систему 2.1 или 5.1, но перепрыгнуть потребляемую мощность в 150 вт не получится.если быть более точным — получится, но не на долго. пока не выйдет волшебный дым, без которого, как известно, не работает ни одно электрическое или электронное устройство. как видно — речь идет о банальном суммировании. в данном случае речь идет о сопротивлении — 4 ома(1и 3 ревизия. 2 ревизия — 8 ом )

RMAA 6.4.5

Независимо от того, имеет ли увлеченный человек золотые уши или менее развитые чувства, он рано или поздно столкнется с проблемами создания акустики с помощью самодельных инструментов. Как «новичок» в сборке звуковых ящиков, разве вы не потратили бы часы, пытаясь добиться лучшего звука из только что купленных динамиков, меняя детали и пытаясь не разочароваться в кроссовере, разработанном программой (возможно, используя данные из заводской таблицы данных)?

Скорее всего, это не было сделано для этой цели. Это связано с тем, что в заводском техническом паспорте указаны условия измерения, которые часто даже не указываются, и в редких случаях соответствуют условиям, указанным при фактическом использовании. Многие производители (например, Peerless, VIFA, Scan-Speak) измеряют свои данные передачи, встроенные в стену измерительной комнаты, что означает совершенно другие условия, чем при использовании в коробе. И это только один аспект проблемы среди многих других (например, дифракция, кажущиеся нюансами ошибки, которые могут вызвать до 3-6 поломок и т.д.), Но это не тема данной статьи.

Paradigm Monitor 7 v.5 СЧдинамики

Программа RMAA 5.5, а лучше найти RightMark Audio Analyzer 6.4.5

Прежде чем всё дойдёт до вас, позвольте мне рассказать вам о моем личном опыте использования этой очень полезной и, к тому же, бесплатно загружаемой программы. С помощью этой утилиты мы получаем бесплатно «тестовую лабораторию», которая ограничена только возможностями нашей звуковой карты. (Вам не нужно думать о больших вещах, она делает это в 99% случаев, и точно для измерения звуковых коробов!) Конечно, многие знают, что с годами эта программа превратилась из индивидуальной инициативы в квазиотраслевой стандарт тестирования звуковых карт, ЦАП и т.д.. С этой программой RMAA 5.5 тестируют свои звуковые карты, ЦАПы многие известные производители, в том числе Creative.

RMAA 6.4.5

Как работает RMAA или RightMark Audio Analyzer 6.4.5? Довольно просто: из линейного выхода тестовый сигнал должен быть направлен на линейный входной разъем карты, чтобы измерить возможности ЦАП карты в системе с обратной связью (передача частоты, искажения, отношение сигнал / шум, IMD, перекрестные помехи между каналами и т. д.).

Что наиболее важно, он может компенсировать измеренный результат данными из предыдущего результата. На практике это означает, что если мы измеряем свойства карты, используя метод, упомянутый выше, а затем вставляем любое устройство (усилитель, деку и т. д.) В замкнутый контур , используя функцию компенсации, система может точно соответствовать возможностям устройства.

Однако, учитывая среднее качество современных звуковых карт, могу сказать, что использование функции компенсации тоже не очень важно, так как +/- 0.5-1 действительно значительный.

Намного важнее получить качественную электретную капсулу и соответствующий ей «бокс».

Измерительный микрофон

микрофон купить

Приобрести для дома два продукта Panasonic сложно, но решить эту проблему можно. Модель Monacor MCE-2000 снята с производства, но их довольно много бу в рознице, о есть много других еще более лучших. Так что посмотреть стоит!

При создании измерительного микрофона в первую очередь следует помнить о том, чтобы установить капсулу так, чтобы ее «передняя часть» была достаточно свободной и рядом с ней не было потенциально отражающей поверхности. (Так что НЕ погружайте капсулу ни во что!)

Пластиковая трубка, которая точно соответствует диаметру капсулы, может быть хорошим решением.

Вклеивая в него электрод, мы получаем «бокс», отвечающий всем требованиям, так как капсула остается точной, а механической устойчивости бокса также достаточно для фиксации во время измерения. Важно удалить пространство за капсулой в тюбике., поскольку эти устройства являются всенаправленными, возможно, резонансный «свист» за ними отрицательно сказывается на точности наших измерений.

Разводка микрофона бесконечно проста: подключите «корпус» электрета (извините за простоту, жертвую точностью на алтаре пластичности) к точке заземления «маленького гнезда», а другой полюс электрета подсоедините к «концу» гнезда, то есть левой стороне.

sonus-faber-olympica-iii динамики

Те, кто имеет предусилитель, должны, конечно, работать по входам усилителя. Конечно, низкочастотную передачу можно улучшить, но в конструкции преобразователя эта область не является проблемой.

Теперь, когда мы успешно создали датчик-микрофон, давайте посмотрим, как его можно использовать с RMAA 5.5, а лучше RMAA 6.4.5

Программа RMAA 6 как акустическая измерительная система

Вроде все готово для измерений. Все, что нам нужно сделать, это подробно рассмотреть, как подключить нашу систему, настроить нашу программу для получения хороших результатов.

Первым шагом, конечно же, является сама установка RMAA 6.4.5. Как только мы это сделаем, нам нужно решить правильную разводку «оборудования».

RMAA 6.4.5

Используя микрофоны, описанные выше, вы можете подключиться напрямую к звуковой карте без использования предусилителя, используя микрофонный вход. Конечно, вы также можете использовать предусилитель, но в этом случае, конечно, мы используем линейный вход! Если проводка, подключена правильно, вам может потребоваться настроить программное обеспечение.

Запускаем настройку программного обеспечения , нажав на маленький динамик на панели задач на микшере! Установите регуляторы «общая громкость» в максимальное положение, приглушив остальные. Это очень важно, при небольшой невнимательности мы можем доставить себе массу неудобств и получить неточные измерения!

Когда вы закончите, нажмите «Свойства» в меню «Настройки». Здесь выберите переключатель «для записи» и выберите все для отображения! Полученный микшер будет использоваться в наших измерениях. Выберите микрофонный вход для использования и выберите усиление микрофона как одну из специальных опций!

настройка RMAA 6

настройка RMAA 6

Начнем RMAA 6! Щелкните кнопку параметров теста. В появившемся здесь меню нам нужно изменить вкладку тела акустики , оставив остальное без изменений. И здесь наша задача находится на расстоянии одного клика: установите флажок Включить режим тестирования акустики ! Затем программа указывает, что вы установили сигнал калибровки на 1000 Гц. Важно, что как бы соблазнительно это ни выглядело, НЕ ставьте отметку в поле с надписью « корпус сабвуфера» !

В окне RMAA 6.4.5 ( после закрытия параметров тестирования ) нажмите нижнюю левую кнопку, которая похожа на магнит. После этого вы увидите следующее окно:

Тест акустики и тест динамиков

rmaa

После этого давайте помолчим, потому что акустические измерения уже идут! Когда измерение будет завершено, выберите слот для результата , затем посмотрите на график, нажав кнопку, отмеченную красным кружком на рисунке ниже! Я надеюсь, что все будут счастливы, увидев первое (настоящее) настоящее акустическое измерение в своей жизни!

rmaa_тест

ИТОГИ. Многие скажут, но как насчет отражений в помещении? Ну, я тоже долго сомневался в подлинности измерения RMAA 6.4.5. Пока я не получил одну из лидирующих на рынке систем. Сравнивая его измерения с RMAA, я могу сказать то же самое: нам не о чем беспокоиться! Я не знаю, как именно вы это делаете (здесь используется какая-то синхронизация между выходом и входом), но я уверен, что ваше измерение далеко не без аномалий, вызванных измерительной комнатой .

Я искренне надеюсь, что сейчас могу оказать большую помощь всем тем, кто давно хотел создать свою акустику, но не решался из-за отсутствия измерительной системы, или тем, кто часами не мог бороться с минусами корпуса и некоторыми проблемами кроссовера.

Позже мы также поговорим о характеристиках передачи микрофонов, правильных методах измерения и методах измерения для каждого типа динамика и акустики в целом.

Читайте также:

  • Kyocera 5150 не добавляет тонер
  • Какой цветок защищает от компьютерного излучения
  • Как переименовать файл в clion
  • Как снять колесо со скутера заднее irbis
  • Какие приложения можно установить на ps3

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *