Как рассчитать предельный угол полного отражения
Практическое занятие №2.
Правило знаков в оптике. Основные законы распространения света
2.4. Задачи на эффект полного внутреннего отражения
2.4.1. Эффект полного внутреннего отражения как частный случай закона преломления
По соотношениям закона преломления несложно установить: Угол полного внутреннего отражения — это угол, при падении под которым луч пойдет вдоль границы раздела двух сред, теоретически даже не проникая ни в одну из них.
Получается, что угол выхода = 90, синус =1. По соотношениям для закона преломления несложно установить:
Угол полного внутреннего отражения:
Легко догадаться, что полное внутреннее отражение может происходить только для перехода из среды более плотной в менее плотную. Иначе получится синус больше 1 (а это невозможно). Например, задача:
Задача 1.
Определить угол полного внутреннего отражения на границе раздела сред стекло-воздух.
Решение:
воздух; ; — угол полного внутреннего отражения.
Ответ: Полное внутреннее отражение будет наступать при углах, больших чем .
При превышении угла полного внутреннего отражения , как видно из рисунка, производится отражение луча от границы раздела по закону отражения.
Задача 2.
Показатель преломления первой среды n 1 =2. Синус угла ПВО =0.71. Определить показатель преломления второй среды.
$F 1.42 % 5
Решение:
По сотношениям для угла ПВО:
n 2 =sin ε ПВО ·n 1
Таким образом, n 2 =0.71·2=1.42
Ответ: Показатель преломления второй среды n 2 =1.42
2.4.2. Применение явления ПВО
Явление полного внутреннего отражения используется в оптике: в волоконной оптике, в призмах для подсветки штрихов и перекрестий и т.д.
a) Световод
Для передачи света или изображения по волокну используется световод:
Свет запускается в жилу световода под углом, большим угла ПВО, и таким образом, многократно отражаясь от стен, свет доходит до конца световода.
б) Призмы
Отражение от граней в призмах.
ПРИЗМА ОПТИЧЕСКАЯ — призма из прозрачного вещества (стекол, кварца, флюорита, LiF, NaCl, KBr, Csl и др.) Различают спектральные (дисперсионные) призмы, которые используют для изучения явлений, связанных с дисперсией света, и применяют в спектральных приборах; отражательные призмы, применяющиеся в оптических системах для изменения направления лучей; поляризационные призмы.
Если расчет показывает, что угол падения луча на отражающую грань больше угла полного внутреннего отражения, это означает, что на данную грань отражающее покрытие наносить не нужно. Например:
Не следует на отражающую грань наносить отражающее покрытие.
Законы отражения и преломления имеют очень важное значение в геометрической оптике, т.к. последовательное их применение к поверхностям оптической системы позволяет производить расчет хода луча, т.е. определять координаты луча.
Полное отражение
Если свет переходит из оптически менее плотной среды в оптически более плотную (n 2 > n 1 ), то всегда существуют как отраженный, так и преломленный пучки, энергии которых соответствуют условию (1). Несколько иной результат получается при переходе света из оптически более плотной в оптически менее плотную среду (n 2 u2; и согласно закону преломления (1.4) показатель преломления n>1, поэтому a>b (рис. 10, a): преломленный луч приближается к перпендикуляру к границе раздела сред.
Если направить луч света в обратном направлении – из оптически более плотной среды в оптически менее плотную вдоль бывшего преломленного луча (рис. 10, б) , то закон преломления запишется так:
Преломленный луч по выходе из оптически более плотной среды пойдет по линии бывшего падающего луча, поэтому a a0преломление света невозможно. Значит, луч должен полностью отразиться. Это явление и называется полным отражением света.
Для наблюдения полного отражения можно использовать стеклянный полуцилиндр с матовой задней поверхностью. Полуцилиндр закрепляют на диске так, чтобы середина плоской поверхности полуцилиндра совпадала с центром диска (рис. 12). Узкий пучок света от осветителя направляют снизу на боковую поверхность полуцилиндра перпендикулярно его поверхности. На этой поверхности луч не преломляется. На плоской поверхности луч частично преломляется и частично отражается. Отражение происходит в соответствии с законом отражения, a преломление – в соответствии с законом преломления (1.4).
Если увеличивать угол падения, то можно заметить, что яркость (и следовательно, энергия) отраженного пучка растет, в то время как яркость (энергия) преломленного пучка падает. Особенно быстро убывает энергия преломленного пучка, когда угол преломления приближается к 90°. Наконец, когда угол падения становится таким, что преломленный пучок идет вдоль границы раздела (см. рис. 11), доля отраженной энергии составляет почти 100%. Повернем осветитель, сделав угол паденияa большим a0. Мы увидим, что преломленный пучок исчез и весь свет отражается от границы раздела, т. е. происходит полное отражение света.
Угол паденияa0, соответствующий углу преломления 90°, называют предельным углом полного отражения. При sinb=1 формула (1.8) принимает вид
Из этого равенства и может быть найдено значение предельного угла полного отражения a0. Для воды (n=1,33) он оказывается равным 48°35″, для стекла (n=1,5) он принимает значение 41°51″, а для алмаза (n=2,42) этот угол составляет 24°40″. Во всех случаях второй средой является воздух.
Явление полного отражения легко наблюдать на простом опыте. Нальем в стакан водуи поднимем его несколько выше уровня глаз. Поверхность воды при рассматривании ее снизу сквозь стенку кажется блестящей, словно посеребренной вследствие полного отражения света.
Полное отражение используют в так называемой волоконной оптике для передачи света и изображения по пучкам прозрачных гибких волокон – световодов. Световод представляет собой стеклянное волокно цилиндрической формы, покрытое оболочкой из прозрачного материала с меньшим, чем у волокна, показателем преломления. За счет многократного полного отражения свет может быть направлен по любому (прямому или изогнутому) пути
По мере улучшения технологии изготовления длинных пучков волокон – световодов все шире начинает применяться связь (в том числе и телевизионная) с помощью световых лучей.
Предельный угол полного отражения — угол падения света на границу раздела двух сред, соответствующий углу преломления 90 град.
Волоконная оптика раздел оптики, который изучает физические явления, возникающие и протекающие в оптических волокнах.
4. Распространение волн в оптически неоднородной среде. Объяснение искривлений лучей. Миражи. Астрономическая рефракция. Неоднородная среда для радиоволн.
Мираж оптическое явление в атмосфере: отражение света границей между резко различными по плотности слоями воздуха. Для наблюдателя такое отражение заключается в том, что вместе с отдалённым объектом (или участком неба) видно его мнимое изображение, смещённое относительно предмета. Миражи делят на нижние, видимые под объектом, верхние, — над объектом, и боковые.
Нижний мираж
Наблюдается при очень большом вертикальном градиенте температуры (падении её с высотой) над перегретой ровной поверхностью, часто пустыней или асфальтированной дорогой. Мнимое изображение неба создаёт при этом иллюзию воды на поверхности. Так, уходящая вдаль дорога в жаркий летний день кажется мокрой.
Верхний мираж
Наблюдается над холодной земной поверхностью при инверсионном распределении температуры (растёт с её высотой).
Фата-моргана
Сложные явления миража с резким искажением вида предметов носят название Фата-моргана.
Объёмный мираж
В горах очень редко, при стечении определённых условий, можно увидеть «искажённого себя» на довольно близком расстоянии. Объясняется это явление наличием в воздухе «стоячих» паров воды.
Рефракция астрономическая — явление преломления световых лучей от небесных светил при прохождении через атмосферу/ Поскольку плотность планетных атмосфер всегда убывает с высотой, преломление света происходит таким образом, что своей выпуклостью искривленный луч во всех случаях обращен в сторону зенита. В связи с этим рефракция всегда «приподнимает» изображения небесных светил над их истинным положением
Рефракция вызывает на Земле ряд оптико-атмосферных эффектов: увеличение долготы дня вследствие того, что солнечный диск из-за рефракции поднимается над горизонтом на несколько минут раньше момента, в который Солнце должно было бы взойти на основании геометрических соображений; сплюснутость видимых дисков Луны и Солнца близ горизонта из-за того, что нижний край дисков поднимается рефракцией выше, чем верхний; мерцание звезд и др. Вследствие различия величины рефракции у световых лучей с разной длиной волны (синие и фиолетовые лучи отклоняются больше, чем красные) вблизи горизонта происходит кажущееся окрашивание небесных светил.
5. Понятие о линейно поляризованной волне. Поляризация естественного света. Неполяризованное излучение. Дихроичные поляризаторы. Поляризатор и анализатор света. Закон Малюса.
Поляриза́ция волн — явление нарушения симметрии распределения возмущений в поперечной волне (например, напряжённостей электрического и магнитного полей в электромагнитных волнах) относительно направления её распространения. В продольной волне поляризация возникнуть не может, так как возмущения в этом типе волн всегда совпадают с направлением распространения.
линейная — колебания возмущения происходит в какой-то однойплоскости. В таком случае говорят о «плоско-поляризованной волне»;
круговая — конец вектора амплитуды описывает окружность в плоскости колебаний. В зависимости от направления вращения вектора может быть правой или левой .
Поляризация света – процесс упорядочения колебаний вектора напряжённости электрического поля световой волны при прохождении света сквозь некоторые вещества (при преломлении) или при отражении светового потока.
Дихроичный поляризатор содержит пленку, содержащую по крайней мере одно дихроичное органическое вещество, молекулы или фрагменты молекул которого имеют плоское строение. По крайней мере часть пленки имеет кристаллическую структуру. Дихроичное вещество имеет по крайней мере по одному максимуму спектральной кривой поглощения в спектральных диапазонах 400 — 700 нм и/или 200 — 400 нм и 0,7 — 13 мкм. При изготовлении поляризатора наносят на подложку пленку, содержащую дихроичное органическое вещество, накладывают на нее ориентирующее воздействие и сушат. При этом условия нанесения пленки и вид, и величину ориентирующего воздействия выбирают так, что параметр порядка пленки, соответствующий по крайней мере одному максимуму на спектральной кривой поглощения в спектральном диапазоне 0,7 — 13 мкм, имеет величину не менее 0,8. Кристаллическая структура по крайней мере части пленки представляет собой трехмерную кристаллическую решетку, образованную молекулами дихроичного органического вещества. Обеспечивается расширение спектрального диапазона работы поляризатора при одновременном улучшении его поляризационных характеристик.
Закон Малюса — физический закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.
где I 0 — интенсивность падающего на поляризатор света, I — интенсивность света, выходящего из поляризатора, k a — коэффициент прозрачности поляризатора.
6. Явление Брюстера. Формулы Френеля для коэффициента отражения для волн, электрический вектор которых лежит в плоскости падения, и для волн, электрический вектор которых перпендикулярен к плоскости падения. Зависимость коэффициентов отражения от угла падения. Степень поляризации отраженных волн.
Закон Брюстера — закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называетсяуглом Брюстера. Закон Брюстера: , где n 21 — показатель преломления второй среды относительно первой, θ Br — угол падения (угол Брюстера). С амплитудами падающей (U пад) и отраженной (U отр) волн в линии КБВ связано соотношением:
K бв = (U пад — U отр) / (U пад + U отр)
Через коэффициент отражения по напряжению (K U) КБВ выражается следующим образом:
K бв = (1 — K U) / (1 + K U)При чисто активном характере нагрузки КБВ равен:
Предельный угол и полное внутреннее отражение
Когда свет, распространяющийся в какой-нибудь среде, падает на границу с другой средой, обладающей иной оптической плотностью, то какая-то часть его проходит в эту среду и преломляется. Однако другая часть отражается от границы обратно.
Если свет переходит из среды с меньшим показателем преломления в среду с большим показателем преломления, то угол падения больше угла преломления. При переходе света из среды с большим показателем преломления в среду с меньшим показателем преломления, наоборот, угол падения меньше угла преломления. При переходе света из пустоты (или воздуха) в среду, имеющую показатель преломленияп, всем возможным углам падения от 0 до 90˚ соответствуют углы преломления от 0 до некоторого угла φ. Угол φ соответствует углу падения, равному 90˚. Величину угла φ можно рассчитать по формуле n =
, если r приравняем к φ, а вместо i поставим 90º, то: n =
, откуда sin φ =
. Следовательно, при обратном ходе лучей, когда свет проходит из среды с большим показателем преломления в среду с меньшим показателем преломления, существует угол падения больший предельного угла φ, при котором преломленный свет будет полностью отражаться от границы раздела двух сред. Это явление называется полным внутренним отражением. На рис. 5 показано условие, при котором получается предельный угол и возникает полное внутреннее отражение. Чем больше разница между показателями преломления двух сред, тем меньшую величину будет иметь предельный угол. На явлении полного внутреннего отражения основана работа целого ряда оптических приборов, в частности рефрактометров – приборов для измерения показателей преломления, и призмы Николя – важнейшей части поляризационного микроскопа.
Рефрактометры
Рефрактометр Герберта Смита. В рефрактометре Г. Смита (рис. 6) и других рефрактометрах подобного типа определение предельного угла осуществляется с использованием явления полного внутреннего отражения. Для этого полированную пластинку кристалла кладут на плоскую поверхность полуцилиндра, изготовленного из стекла с высоким показателем преломления.
Чтобы удалить воздух, между кристаллом и полуцилиндром помещают жидкость с показателем преломления большим, чем у кристалла. Свет поступает через один из квадрантов, а та его часть, которая испытывает полное внутреннее отражение на нижней поверхности кристалла, образует светлую область в поле зрения оптической трубы, сфокусированной на другой квадрант. Граница между темной и светлой областями указывает предельный угол между стеклом и кристаллом. На полусферической поверхности не происходит преломления лучей, так как они пресекают ее по нормали.
Поскольку жидкость образует тонкую пленку с параллельными поверхностями, ее влияние уравновешивается на входе и выходе лучей и им можно пренебречь. Хотя измеряемым предельным углом является угол между жидкостью и кристаллом, в действительности оно соответствует предельному углу между стеклом и кристаллом за счет отклонения света на границе стекло – жидкость.
Если показатель преломления стекла известен, то, исходя из положения границы между светлой и темной областями, можно непосредственно определить показатель преломления исследуемого кристалла: Nкристалл = (Vвоздух/Vстекло) · (Vстекло/Vкристалл) = 1/sin iвоздух/стекло ·
· sin iкристалл/стекло = Nстекло · sin iкристалл/стекло.
Рефрактометр Аббе. Применяется преимущественно для изучения жидкостей. В нем используется скользящее падение света, переходящего из жидкости в призму, которая изготовлена из стекла с высоким показателем преломления (рис. 7). Он может применяться для прямого определения показателей преломления соответствующим образом распиленных кристаллов, но в основном служит дополнительным методом при иммерсионных исследованиях.
Как рассчитать предельный угол полного отражения
Вращательное движение твердых тел
Предельный угол полного внутреннего отражения для некоторого вещества i = 45°. Найти для этого вещества угол iБ полной поляризации.
Дано:
Полное внутренне отражение наблюдается при падении света на границу раздела оптически более плотной среды с оптически менее плотной средой. При углах падения больших критического i кр свет полностью отражается, не преломляясь. Интенсивность отраженного света в этом случае равна интенсивности падающего света.
При полном внутреннем отражении запишется в виде
При угле падения, равном углу Брюстера іБр: 1. отраженный от границы раздела двух диэлектриков луч будет полностью поляризован в плоскости, перпендикулярной плоскости падения; 2. степень поляризации преломленного луча достигает максимального значения меньшего единицы; 3. преломленный луч будет поляризован частично в плоскости падения; 4. угол между отраженным и преломленным лучами будет равен 90°; 4. тангенс угла Брюстера равен относительному показателю преломления
n 12 — показатель преломления второй среды относительно первой. Угол Брюстера
Как рассчитать предельный угол полного отражения
Оптика > Геометрическая > Полное внутреннее отражение света.
Содержание | Величина | Наименование |
Полное отражение света происходит на границе двух сред при выходе луча из оптически более плотной среды n1 в менее плотную n2 (точки e,f и g — см. рис.) |