Глубина цвета
Бит — это компьютерная единица измерения в двоичной системе счисления. 1 бит информации — это символ, который может восприниматься как два противоположных значения: включен или выключен, да или нет, 1 или 0 (в двоичной системе счисления), черный или белый. Как можно использовать эту информацию дальше?
Постройте креативный маршрут
Получите бесплатно гайды, тесты и видеуроки о направлениях в дизайне. Узнайте, какая профессия в дизайне подойдет именно вам
Постройте креативный маршрут
Получите бесплатно гайды, тесты и видеуроки о направлениях в дизайне. Узнайте, какая профессия в дизайне подойдет именно вам
Содержание
- Как понимать глубину цвета
- Нужна ли большая глубина цвета?
- Какую глубину цвета выбрать
- Выбор между 8 и 16 битами
- Что такое постеризация?
- Сколько бит нужно под конкретную задачу
- Разница между глубиной цвета и цветовым пространством
онлайн-тест на профориентацию
Ответьте на 10 вопросов и узнайте, какая дизайн-специальность вам подходит
Объединяя биты, мы можем описывать более сложные предметы, а точнее, цвета. Добавляя новые биты, мы получаем большее количество комбинаций. Так, один бит имеет только две комбинации — 0 и 1. А два бита — уже четыре: 00, 01, 10, 11. Этот процесс будет повторяться бесконечное количество раз. Для простоты его можно привести к такому определению: количество возможных комбинаций — 2, возведенная в степень, которая равна количеству используемых битов.
Таким образом, «глубина цвета» — это количество бит, которые вмещаются в один пиксель. Это значение позволяет показать любые изменения, которые происходят в рамках определенного диапазона.
Представим шкалу яркости от белого до черного. Если у нас есть 2 бита и 4 возможных значения: черный, темно-серый, светло-серый и белый, — то этого будет недостаточно для получения качественной картинки. Чем больше битов у нас есть, тем больше диапазон серого и более гладкий градиент можно получить при переходе от черного к белому.
На фото ниже можно увидеть, как выглядит одно и то же изображение, но с разной глубиной цвета. В дальнейшем этот термин будет называться «глубина цвета»,«битность» или «цветовое разрешение». Все эти определения являются синонимами и могут заменять друг друга.
как изменить цвет объекта в Photoshop
Как понимать глубину цвета
Глубина цвета позволяет понять, какое количество информации об оттенках цвета содержит конкретная фотография. Эта характеристика отвечает за качество цветопередачи и цветовое разрешение.
Если мы работаем не с черно-белым изображением, а с цветным, то чаще всего мы говорим о цветовом пространстве RGB. Оно формируется из трех цветов: красного, зеленого и синего. При работе с изображениями чаще всего используют редакторы изображений, самые популярные — Adobe Photoshop или Adobe Lightroom. Каждый из них понимает цвет в виде канала. Таким образом, получается, что каждый канал 8-битного цветного изображения содержит по 8 бит информации. А каждый пиксель цветной картинки — 24 бита информации. В 16-битном RGB-изображении с точки зрения Adobe Photoshop будет 48 бит на пиксель.
Иначе ситуация обстоит, например, с 16-битными изображениями. Adobe Photoshop, один из наиболее известных и популярных растровых графических редакторов, будет считать, что в вашем изображении 15+1, а не 16 бит. Получается, что вместо 65536 возможных значений, мы получим только 32768+1=32769.
Пользователи пытались понять суть такой логики разработки с 2011 года. Эксперты Adobe утверждают, что такое решение позволяет программному обеспечению работать быстрее, также благодаря такой хитрости Photoshop обеспечивает более точную среднюю точку в разных режимах смешивания.
Эта риторика верна для программного обеспечения, в частности редакторов Adobe. Производители мониторов стараются быть более прямолинейными и указывать, что их устройство стандартно отображает 8 бит как 24 бит или True Color.
Но куда более интересно увидеть отметку Deep Color — отображение 30, 48 или даже 60 бит на пиксель или 10, 16 или 20 бит на канал. Это обеспечивает максимально естественную и контрастную картинку. Однако существует мнение, что значения более 10 бит на канал являются излишними для большинства случаев.
Нужна ли большая глубина цвета?
Возможность увидеть градиент (переход между цветами) появляется при 9 битах. Однако он будет слабым и сложноуловимым. При 8 битах градиентность становится чуть более заметной. Однако заметить ее все еще можно будет только при попытке намеренно ее обнаружить. Таким образом, 10-битный градиент чаще всего будет оптимальным вариантом. А картинки в 12 бит и выше будут выглядеть для человеческого глаза так же, как при 10 битах.
Это не значит, что высокая битность не нужна. Например, при редактировании изображения большая глубина цвета дает больше возможностей для работы. Так, даже незначительное осветление теней или затемнение бликов в редакторе может выделить недостатки, которые ранее не были очевидными.
Влияя на светлые и темные участки изображения, увеличивая его контраст, мы уменьшаем битовую глубину исходного файла. В итоге на изображении могут появиться цветовые артефакты или полосатость, которые будут заметны уже невооруженным глазом.
профессия | 20 месяцев
графический дизайнер с нуля до про
Станьте дизайнером, который нужен в маркетинге, PR, IT. Дадим не только знания, но и реальный опыт в профессии
Какую глубину цвета выбрать
Все зависит от ваших задач. Пока все звучит так, будто большая глубина цвета — это залог успеха. Но не все так просто. Картинка большей битности действительно выглядит натуральнее и объемнее за счет большего количества информации об оттенках и полутонах. Но может ли человек оценить такое качество картинки? И да, и нет.
Если дать человеку посмотреть на один и тот же градиент в разной битности, то на 8 битах границы перехода цветов будут заметны, но не в 100% случаев. Большую роль играет устройство, с которого будет показано изображение, освещение, яркость экрана и помещение, где проводится просмотр. Все это влияет на то, как человек воспринимает информацию. В повседневной жизни при беглом просмотре с большой долей вероятности зритель не заметит никаких шероховатостей картинки.
Работая с инструментом «Градиент» в Adobe Photoshop, нужно учитывать, что в 8-битном файле инструмент будет создавать 8-битный градиент. При конвертации файла в 16 бит градиент останется 8-битным. А создавая изначально 16-битный файл, «Градиент» будет работать в 12-битном формате (2 в 12 степени = 4096 значений), чего хватит для работы любой сложности.
Как мы помним, чем больше глубина цвета, тем больше информации о цвете изображение хранит. А это напрямую влияет на размер итогового файла. Большое изображение будет занимать много места на вашем устройстве, его неудобно передавать коллегам или заказчикам. Также оно будет долго прогружаться на сайте.
как дизайнеру сочетать цвета
Выбор между 8 и 16 битами
Ниже приведены простые аргументы, которые помогут понять, когда нужно использовать 8-битное изображение, а когда — 16-битное.
8 бит | 16 бит |
Нужно сэкономить пространство на устройстве | Не хотите получить постеризацию |
Не понимаете разницу между 8 и 16 битами | Часто работаете с профессиональными типографиями |
Не занимаетесь обработкой изображений | Вы сильно влияете на изображение при постобработке |
Не печатаете изображения в большом размере | Есть необходимость показать весь спектр оттенков и полутонов в изображении. |
На фотографии есть заметный шум или вы всегда добавляете его при обработке | |
Вы публикуете фотографии в интернете |
Что такое постеризация?
Постеризация — процесс, характеризующийся появлением скачков цветности. В фотографии это явление также называют «бандинг» или «цветовая полосатость». Возникает оно при чрезмерном падении глубины цветности. Сам термин возник от процесса, который использовался художниками для превращения фотографий в печатные плакаты. Уменьшенный разброс цветов в изображении позволял организовать массовую печать.
Чтобы избавиться от этой проблемы, фотографы нередко прибегают к «дизерингу». Это намеренное добавление шума в изображение, позволяющее нейтрализовать проявление «бандинга». Также, чтобы нейтрализовать «полосатость» и скрыть дефекты, используют размытие.
Сколько бит нужно под конкретную задачу
Нельзя сказать, что большее количество бит — это всегда преимущество. Важно понимать задачу, которую вы выполняете, и то, как количество бит в изображении может вам помочь. Вот несколько примеров задач, связанных с изображениями.
Обработка изображений
Для работы в Adobe Photoshop или в ином растровом редакторе лучше использовать 16-битное изображение. Даже в том случае, если исходное — 8-битное. Конвертация позволит чуть более гибко работать с изображением. Говоря о фотографии, рекомендуется снимать в формате RAW, который при конвертации в 16 бит позволит получить максимум возможностей для манипуляций.
Публикация в интернете
Польза 16-битного изображения становится очевидной при постобработке. Однако при публикации изображения в интернете рекомендуется преобразовать изображение в 8-битный вариант. Это позволит получить файл меньшего размера, который будет грузиться быстрее. При возможности воспользуйтесь функцией сглаживания в редакторе, которая добавит легкий шум и скроет возможные нежелательные проявления переходов цвета.
Печать
Отправляя изображения в печать, стоит уточнить у сотрудников фотолаборатории, в каком формате они принимают документы. Некоторые работают только с 16-битными файлами TIFF, PSD или GPEG2000. Однако есть и те, кто требует формат JPG, то есть 8-битные файлы.
Если вам нужно отправить JPG, то нужно завершить всю обработку до преобразования, а при конвертации и сохранении выбрать 90% качество и цветовое пространство Adobe RGB. Если после этих манипуляций вы получили изображение хорошего качества без видимых артефактов, то и при печати с изображением все будет хорошо.
Просмотр
Просмотр изображения — стандартная задача, с которой справится даже простой монитор. Однако в этом случае можно тоже столкнуться с «полосатостью» изображения. Причина этого — 8-битный дисплей. Полосы, которые вы видите, могут быть не на самом изображении, а появляться на этапе показа на экране. Избежать проблем можно, используя 10-битный дисплей. Особенно если вы работаете с фотографией или другим визуалом.
Разница между глубиной цвета и цветовым пространством
Эти два понятия связаны между собой, но нужно понимать разницу между ними. С глубиной цвета все ясно, эта величина показывает количество бит информации в одном пикселе изображения, число возможных значений. Цветовое пространство определяет максимальные значения из всех возможных. Первое позволяет избежать градиентов при переходе от цвета к цвету. Второе — использовать экстремально яркие и контрастные цвета.
Расширяя цветовое пространство («гамму»), можно с большей вероятностью столкнуться с заметными переходами между цветами.
профессия графический дизайнер с нуля до про
Маркетинг, PR, IT — мы не знаем, какую сферу вы выберете, когда станете графическим дизайнером. Но знаем, что вы сможете им стать, получив реальный опыт. Тот, который оценят работодатели
Другие термины на букву «Г»
Что такое разрядность
Разрядность, или глубина цветности, определяет, сколько уникальных оттенков цвета доступны в палитре изображения в терминах количества двоичных 0 и 1, или «бит», используемых для определения каждого цвета. Это не означает, что изображение обязательно использует все эти цвета, а скорее говорит о том, что цвета могут быть описаны с определённым уровнем точности. Для чёрно-белого изображения разрядность определяет количество доступных оттенков серого. Изображения с высокой разрядностью могут использовать больше градаций серого или оттенков цвета, поскольку возможно большее число комбинаций 0 и 1.
Терминология
Каждый цветной пиксель цифрового изображения создаётся посредством комбинации трёх первичных цветов: красного, зелёного и синего. Каждый первичный цвет часто называют «каналом цветности», и он может иметь любые значения интенсивности в пределах заданной разрядности. Разрядность для каждого канала цветности задаётся в «битах на канал». Термин «бит на пиксель» (bpp) означает сумму числа бит во всех трёх каналах и представляет общее количество цветов, доступное для каждого пикселя. Для цветных изображений зачастую неясно, какая из цифр указана. Использование «bpp» в качестве суффикса позволяет внести ясность в этом вопросе.
Пример
Большинство цветных изображений с цифровых камер имеют 8 бит на канал, то есть могут использовать вплоть до восьми 0 и 1. Это позволяет использовать 2 8 или 256 различных комбинаций, транслируемых в 256 различных значений интенсивности для каждого первичного цвета. Когда все три первичных цвета объединяются в одном пикселе, это позволяет создавать 2 8×3 или 16.777.216 различных цветов, называемых также «полный цвет». Это означает 24 бита на пиксель, поскольку каждый пиксель состоит из трёх 8-битных каналов. Число оттенков цвета, доступное для любого X-битного изображения, составляет 2 X , если X означает количество бит на пиксель, и 2 3X , если X означает количество бит на канал.
Сравнение
Следующая таблица иллюстрирует различные типы изображений в терминах их разрядности, числа возможных цветов и общеупотребительных названий.
bpp | Число цветов | Название |
---|---|---|
1 | 2 | Монохром |
2 | 4 | CGA |
4 | 16 | EGA |
8 | 256 | VGA |
16 | 65536 | XGA, High Color |
24 | 16777216 | SVGA, True Color |
32 | 16777216 + прозрачность | |
48 | 281 триллион |
Визуализация глубины цветности
Наведя курсор на метки внизу, вы увидите изображение в выбранном числе цветов. Разница между 24 bpp и 16 bpp незначительна, однако чётко видна, если ваш дисплей настроен на полный цвет или более (24 или 32 bpp).
24 bpp | 16 bpp | 8 bpp |
Полезные советы
- Человеческий глаз может различить порядка 10 миллионов цветов, посему сохранять изображение с большей разрядностью, чем 24 bpp, избыточно, если оно предназначено только для просмотра. С другой стороны, изображения с разрядностью выше 24 bpp полезны, поскольку они лучше выдерживают пост-обработку (см. «Постеризация изображений»).
- Градации цвета в изображениях менее 8 бит на канал цветности могут быть чётко заметны на гистограмме изображения.
- Доступная глубина цветности зависит от типа файла. Стандартные файлы JPEG и TIFF могут использовать только 8 и 16 бит на канал, соответственно.
BROWSE CATEGORIES
- Concepts & Terminology
- Using Camera Equipment
- Editing & Post-Processing
- Color Management & Printing
- Photo Techniques & Styles
Как определить глубину цвета изображения формула
Практическая работа (решение задач) «Определение глубины цвета и информационного объема графического файла»
«Определение глубины цвета и информационного объема графического файла»
Цель: научиться вычислять по формулам глубину цвета и информационный объем растрового изображения.
Пиксель— цветная точка. Для кодирования черно-белого изображения достаточно 1 бита (0-черный, 1 – белый). Для кодирования цветного изображения с 256 цветами необходимо 8 бит. Для определения глубины цвета используют формулу: , N — количество цветов в палитре , I — глубина цвета (количество бит, которое тратится на кодирование одной цветной точки). Ниже частично заполнена таблица. Выполните расчеты и заполните оставшиеся ячейки.
X — число строк в изображении, Y – число точек в строке, I — глубина цвета, V — информационный объем, тогда бит.
Более крупные единицы измерения информации:
1 Кбайт =1024 байта = 8192 бит;
1 Мбайт =1024 Кбайт; …
Z 1. В палитре 1024 цвета. Определите глубину цвета.
Z 2. Разрешение экрана 768х1366. Определите сколько точек помещается на экране.
Z 3. Глубина цвета 5 бит. Определите количество цветов в палитре.
Z 4. Информационный объем файла 20000 бит. Определите глубину цвета и количество цветов в палитре, если размер изображения 100х200.
Z 5. Информационный объем файла 80000 бит. Определите глубину цвета и количество цветов в палитре, если размер изображения 100х200.
Z 6. 2 Кбайт=? Байт=? бит
Z 7. 122880 бит = ? байт = ? бит
Z 8. Растровый графический файл содержит черно-белое изображение (без градаций серого) размером 100х100 точек. Каков информационный объем этого файла?
Z 9. Растровый графический файл содержит черно-белое изображение с 32 градациями серого цвета размером 800х600 точек. Каков информационный объем этого файла? Ответ запишите в Кбайтах.
Z 10. В процессе преобразования растрового графического файла количество цветов увеличилось с 16 до 256. Во сколько раз увеличился информационный объем файла?
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс профессиональной переподготовки
Информатика: теория и методика преподавания в образовательной организации
Курс профессиональной переподготовки
Математика и информатика: теория и методика преподавания в образовательной организации
Онлайн-конференция для учителей, репетиторов и родителей
Формирование математических способностей у детей с разными образовательными потребностями с помощью ментальной арифметики и других современных методик
- Василенко Ирина АлександровнаНаписать 5590 10.02.2017
Номер материала: ДБ-184943
Международная дистанционная олимпиада Осень 2021
-
10.02.2017 458
-
10.02.2017 524
-
10.02.2017 735
-
10.02.2017 223
-
10.02.2017 387
-
10.02.2017 355
-
10.02.2017 300
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Рособрнадзор оставил за регионами решение о дополнительных школьных каникулах
Время чтения: 1 минута
В школе в Пермском крае произошла стрельба
Время чтения: 1 минута
В России появился стандарт сбора цифрового следа в образовании
Время чтения: 2 минуты
В России объявлены нерабочие дни с 30 октября по 7 ноября
Время чтения: 2 минуты
Основы православной культуры чаще всего преподают учителя начальных классов
Время чтения: 2 минуты
В Тульской области вводят школьные каникулы c 25 октября по 7 ноября
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Глубина цвета — это что такое в компьютерной графике?
Посетите практически любой форум по фотографии, и вы непременно наткнетесь на дискуссию относительно преимуществ RAW и JPEG файлов. Одна из причин, по которой некоторые фотографы предпочитают формат RAW — это бóльшая глубина бита (глубина цвета)*, содержащаяся в файле. Это позволяет вам получать фотографии большего технического качества, чем те, что вы можете получить из файла JPEG.
*Bitdepth (глубина бита), или Colordepth (глубина цвета, в русском языке чаще используется именно это определение) — количество бит, используемых для представления цвета при кодировании одного пикселя растровой графики или видеоизображения. Часто выражается единицей бит на пиксель (англ. bits per pixel, bpp). © Wikipedia
Что такое битовая глубина
Глубина цвета — это количество двоичных знаков, используемых для хранения одного пикселя экрана. Другими словами, это количество различных цветов, которые могут быть представлены аппаратным или программным обеспечением. Но это не означает, что изображение обязательно использует все цвета. Когда речь идет о пикселе, понятие глубина цвета — это то, что может быть определено как бит на пиксель (bpp). Он определяет количество используемых двоичных знаков для одного пикселя. Тогда глубина цвета изображения относится к числу бит на пиксель на мониторе компьютера для представления определенного цвета.
Решение заданий 9 ЕГЭ по информатике
Тема: Кодирование изображений
9_1: ЕГЭ по информатике 2020 задание 9 ФИПИ вариант 1 (Крылов С.С., Чуркина Т.Е.): Какой минимальный объем памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 160 х 160 пикселей при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
Типовые задания для тренировки
✍ Решение:
Используем формулу нахождения объема:
-
По формуле объема файла изображения имеем:
128 * 256 = 27 * 28 = 215
-
В вышеуказанной формуле i — это глубина цвета, от которой зависит количество цветов в палитре:
Количество цветов = 2i
i = I / (M*N)
Учтем, что 24 Кбайт необходимо перевести в биты. Получим:
23 * 3 * 210 * 23: i = (23 * 3 * 210 * 23) / 215 = = 3 * 216 / 215 = 6 бит
Теперь найдем количество цветов в палитре:
26 = 64вариантов цветов в цветовой палитре
Результат: 64
Смотрите видеоразбор задания:
Тема: Кодирование изображений:
ЕГЭ по информатике задание 9.3 (источник: 9.1 вариант 24, К. Поляков): После преобразования растрового 256-цветного графического файла в 4-цветный формат его размер уменьшился на 18 Кбайт. Каков был размер исходного файла в Кбайтах? Типовые задания для тренировки
✍ Решение:
-
По формуле объема файла изображения имеем:
I = N * i
где N — общее количество пикселей, а i — глубина кодирования цвета (количество бит, выделенное на 1 пиксель)
i можно найти, зная количество цветов в палитре:
количество цветов = 2i
до преобразования: i = 8 (28 = 256) после преобразования: i = 2 (22 = 4)
-
Составим систему уравнений на основе имеющихся сведений, примем за x количество пикселей (разрешение):
I = x * 8 I — 18 = x * 2
Выразим x в первом уравнении:
Подставим во второе уравнение и найдем I (объем файла):
I — 18 = I / 4 4I — I = 72 3I = 72 I = 24
Результат: 24
Подробный разбор 9 задания ЕГЭ смотрите на видео:
Тема: Кодирование изображений:
ЕГЭ по информатике задание 9.4 (источник: 9.1 вариант 28, К. Поляков, С. Логинова): Цветное изображение было оцифровано и сохранено в виде файла без использования сжатия данных. Размер полученного файла – 42 Мбайт. Затем то же изображение было оцифровано повторно с разрешением в 2 раза меньше и глубиной кодирования цвета увеличили в 4 раза больше по сравнению с первоначальными параметрами. Сжатие данных не производилось. Укажите размер файла в Мбайт, полученного при повторной оцифровке. Типовые задания для тренировки
✍ Решение:
- По формуле объема файла изображения имеем:
I = N * i
где N — общее количество пикселей или разрешение, а i — глубина цвета (количество бит, выделенное на 1 пиксель)
42 = N * i I = N / 4 * 4i
-
Выразим i в первом уравнении:
Подставим во второе уравнение и найдем I (объем файла):
После сокращений получим:
I = 42
Результат: 42
Тема: Кодирование изображений:
ЕГЭ по информатике задание 9.5 (источник: 9.1 вариант 30, К. Поляков, С. Логинова): Изображение было оцифровано и сохранено в виде растрового файла. Получившийся файл был передан в город А по каналу связи за 72 секунды. Затем то же изображение было оцифровано повторно с разрешением в 2 раза больше и глубиной кодирования цвета в 3 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б, пропускная способность канала связи с городом Б в 3 раза выше, чем канала связи с городом А. Сколько секунд длилась передача файла в город Б? Типовые задания для тренировки
✍ Решение:
-
По формуле скорости передачи файла имеем:
V = I / t
где I — объем файла, а t — время
По формуле объема файла изображения имеем:
где N — общее количество пикселей или разрешение, а i — глубина цвета (количество бит, выделенное на 1 пиксель)
- Количество цветов зависит от глубины кодирования цвета, которая измеряется в битах. Для хранения кадра, т.е. общего количества пикселей выделено 900 Кбайт. Переведем в биты:
900 Кбайт = 22 * 225 * 210 * 23 = 225 * 215
-
Посчитаем общее количество пикселей (из заданного размера):
1024 * 768 = 210 * 3 * 28
Определим объем памяти, необходимый для хранения не общего количества пикселей, а одного пикселя ([память для кадра]/[кол-во пикселей]):
\[ \frac > > = \frac \approx 9 \]
9 бит на 1 пиксель
29 = 512
Результат: 512
Смотрите подробное решение на видео:
Тема: Кодирование изображений:
9_8: Демоверсия ЕГЭ 2020 информатика: Автоматическая фотокамера производит растровые изображения размером 640×480 пикселей. При этом объём файла с изображением не может превышать 320 Кбайт, упаковка данных не производится. Какое максимальное количество цветов можно использовать в палитре?
✍ Решение:
-
По формуле объема файла изображения имеем:
I = N * i
где N — общее количество пикселей или разрешение, а i — глубина кодирования цвета (количество бит, выделенное на 1 пиксель)
I = 320 Кбайт, N = 640 * 420 = 307200 = 75 * 212 всего пикселей, i — ?
-
Количество цветов в изображении зависит от параметра i, который неизвестен. Вспомним формулу:
количество цветов = 2i
Поскольку глубина цвета измеряется в битах, то необходимо объем перевести из Килобайт в биты:
320 Кбайт = 320 * 210 * 23 бит = 320 * 213 бит
Найдем количество цветов:
2i = 28 = 256
Результат: 256
Подробное решение данного 9 задания из демоверсии ЕГЭ 2020 года смотрите на видео:
9_21: : ЕГЭ по информатике задание 9.21 (источник: К. Поляков, 9.1 вариант 58): Для хранения в информационной системе документы сканируются с разрешением 300 ppi. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет 5 Мбайт. В целях экономии было решено перейти на разрешение 150 ppi и цветовую систему, содержащую 16 цветов. Средний размер документа, отсканированного с изменёнными параметрами, составляет 512 Кбайт.
Определите количество цветов в палитре до оптимизации.
Типовые задания для тренировки
✍ Решение:
-
По формуле объема файла изображения имеем:
I = N * i
где N — общее количество пикселей или разрешение, а i — глубина кодирования цвета (количество бит, выделенное на 1 пиксель).
Так как по заданию имеем разрешение, выраженное в пикселях на дюйм, то фактически это означает:
I = значение ppi2 * N * i
Формула количества цветов:
количество цветов = 2i
Неэкономный вариант: I = 5 Мбайт = 5 * 223 бит, N — ?, i — ? 300 ppi Экономный вариант: I = 512 Кбайт = 29 * 213 бит = 222 бит, N — ?, i = 4 бит (24 = 16) 150 ppi
-
Так как в экономном режиме нам известны все составляющие формулы, кроме разрешения (N), то найдем разрешение:
N = I / (i * 150*150 ppi) N = 222 / (4 * 22500)
Подставим все известные значения, включая найденное N, в формулу для неэкономного режима:
I = N * 300*300 ppi * i 5 * 223 = (222 * 300 * 300 * i) / (22500 * 4);
Выразим i и вычислим его значение:
i = (5 * 223 * 22500 * 4) / (222 * 300 * 300) = 9000 / 900 = 10 бит
По формуле нахождения количества цветов в палитре имеем:
210 = 1024
Результат: 1024
Тема: Кодирование звука
9_7: ЕГЭ по информатике 2020 задание 9 ФИПИ вариант 15 (Крылов С.С., Чуркина Т.Е.): На студии при четырехканальной (квадро) звукозаписи с 32-битным разрешением за 30 секунд был записан звуковой файл. Сжатие данных не производилось. Известно, что размер файла оказался 7500 Кбайт.
С какой частотой дискретизации (в кГц) велась запись? В качестве ответа укажите только число, единицы измерения указывать не нужно. Типовые задания для тренировки
✍ Решение:
-
По формуле объема звукового файла получим:
I= 7500 Кбайт β= 32 бита t= 30 секунд S= 4 канала
-
ƒ — частота дискретизации — неизвестна, выразим ее из формулы:
24 = 16 КГц
Результат: 16
Для более детального разбора предлагаем посмотреть видео решения данного 9 задания ЕГЭ по информатике:
Тема: Кодирование звука:
ЕГЭ по информатике задание 9_9 (источник: 9.2 вариант 36, К. Поляков): Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 2 раза выше и частотой дискретизации в 3 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 15 секунд; пропускная способность канала связи с городом Б в 4 раза выше, чем канала связи с городом А.
Сколько секунд длилась передача файла в город A? В ответе запишите только целое число, единицу измерения писать не нужно. Типовые задания для тренировки
✍ Решение:
-
Для решения понадобится формула нахождения скорости передачи данных формулы:
Вспомним также формулу объема звукового файла:
где: I — объем β — глубина кодирования ƒ — частота дискретизации t — время S — кол-во каналов (если не указывается, то моно)
город Б: β — в 2 раза выше ƒ — в 3 раза меньше t — 15 секунд, пропускная способность (скорость V) — в 4 раза выше
-
Исходя из предыдущего пункта, для города А получаем обратные значения:
город А: βБ / 2ƒБ * 3IБ / 2VБ / 4tБ / 2, tБ * 3, tБ * 4 — ?
-
Вспомним формулу объема звукового файла:
1 состояние: S = 2 канала I = 30 Мбайт 2 состояние: S = 1 канал β = в 2 раза выше ƒ = в 1,5 раза ниже I = ?
- Так как изначально было 2 канала связи (S), а стал использоваться один канал связи, то файл уменьшился в 2 раза:
Глубина кодирования (β) увеличилась в 2 раза, то и объем (I) увеличится в 2 раза (пропорциональная зависимость):
Частота дискретизации (ƒ) уменьшилась в 1,5 раза, значит, объем (I) тоже уменьшится в 1,5 раза:
Рассмотрим все изменения объема преобразованного файла:
I = 30 Мбайт / 2 * 2 / 1,5 = 20Мбайт
Результат: 20
Смотрите видеоразбор данной задачи:
Тема: Кодирование звуковых файлов:
ЕГЭ по информатике задание 9_11 (источник: 9.2 вариант 72, К. Поляков): Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 100 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 3 раза выше и частотой дискретизации в 4 раз меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 15 секунд.
Во сколько раз скорость (пропускная способность канала) в город Б больше пропускной способности канала в город А? Типовые задания для тренировки
✍ Решение:
- Вспомним формулу объема звукового файла:
I = β * ƒ * t * S
I — объем β — глубина кодирования ƒ — частота дискретизации t — время
А: t = 100 c. Б: β = в 3 раза выше ƒ = в 4 раза ниже t = 15 c.
✎ 1 способ решения:
- Скорость передачи данных (пропускная способность) зависит от времени передачи файла: чем больше время, тем ниже скорость. Т.е. во сколько раз увеличится время передачи, во столько раз уменьшится скорость и наоборот.
- Из предыдущего пункта видим, что если мы вычислим, во сколько раз уменьшится или увеличится время передачи файла в город Б (по сравнению с городом А), то мы поймем, во сколько раз увеличится или уменьшится скорость передачи данных в город Б (обратная зависимость).
- Соответственно, представим, что преобразованный файл передается в город А. Объем файла изменился в 3/4 раза (глубина кодирования (β) в 3 раза выше, частота дискретизации (ƒ) в 4 раза ниже). Объем и время изменяются пропорционально. Значит и время изменится в 3/4 раза:
-
Вспомним формулу объема звукового файла:
β = 32 бита ƒ = 32кГц = 32000Гц t = 2 мин = 120 с
-
Подставим данные в формулу; учтем, что результат необходимо получить в Мбайтах, соответственно, произведение будем делить на 223 (23 (байт) * 210 (Кбайт) * 210(Мбайт)):
(32 * 32000 * 120) / 223 = =( 25 * 27 * 250 * 120) / 223 = = (250*120) / 211 = = 30000 / 211 = = (24 * 1875) / 211 = = 1875 / 128
Полученный результат значения объема умножим на 4 с учетом количества каналов связи:
Ближайшее число, кратное 10 — это 60.
Результат: 60
Смотрите подробное решение:
Тема: Кодирование звука:
9_19: Государственный выпускной экзамен ГВЭ 2018 (информатика ГВЭ ФИПИ, задание 7): Производится двухканальная (стерео) цифровая звукозапись. Значение сигнала фиксируется 48 000 раз в секунду, для записи каждого значения используется 32 бит. Запись длится 5 минут, её результаты записываются в файл, сжатие данных не производится.
Какая из приведённых ниже величин наиболее близка к размеру полученного файла?
1) 14 Мбайт 2) 28 Мбайт 3) 55 Мбайт 4) 110 Мбайт
✍ Решение:
-
По формуле объема звукового файла имеем:
I — объем β — глубина кодирования = 32 бита ƒ — частота дискретизации = 48000 Гц t — время = 5 мин = 300 с S — количество каналов = 2
- Подставим в формулу имеющиеся значения:
I = 48000 * 32 * 300 * 2
Поскольку значения большие, необходимо числа 48000 и 300 выразить в степенях двойки:
48000 | 2 24000 | 2 12000 | 2 6000 | 2 = 375 * 273000 | 2 1500 | 2 750 | 2 375| 2 — уже не делится 187,5 300 | 2 = 75 * 22150 | 2 75 | 2 — уже не делится 37,5
I = 375 * 75 * 215
В предложенных вариантах ответа видим, что результат везде в Мбайт. Значит, необходимо разделить полученный нами результат на 223 (23 * 210 * 210):
I = 375 * 75 * 215 / 223 = 28125 / 28
Найдем приближенное к числу 28125 значение в степени двойки:
210 = 1024 1024 * 2 2048 * 2 4096 * 2 8192 * 2 16384 * 2 32768
210 * 25 = 215 = 32768 210 * 24 = 214 = 16384
Число 28125 лежит между этими значениями, значит берем их:
215 / 28 = 27 = 128 214 / 28 = 26 = 64
Выбираем ответ, значение в котором находится между двумя этими числами: вариант 4 (110 Мбайт)
Результат: 4
Подробное решение ГВЭ задания 7 2020 года смотрите на видео:
Тема: Кодирование звука:
9_20: Решение 9 задания ЕГЭ по информатике (диагностический вариант экзаменационной работы 2020 года, С.С. Крылов, Д.М. Ушаков): Производится двухканальная (стерео) звукозапись с частотой дискретизации 4 кГц и 64-битным разрешением. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится.
Определите приблизительно размер получившегося файла (в Мбайтах). В качестве ответа укажите ближайшее к размеру файла целое число, кратное 2.
✍ Решение:
- По формуле объема звукового файла имеем:
I — объем β — глубина кодирования = 32 бита ƒ — частота дискретизации = 48000 Гц t — время = 5 мин = 300 с S — количество каналов = 2
-
Подставим в формулу имеющиеся значения. Для удобства будем использовать степени двойки:
ƒ = 4 кГЦ = 4 * 1000 Гц
22 * 210 B = 64 бит = 26 / 223 Мбайт t = 1 мин = 60 c = 15 * 22 c S = 2
Подставим значения в формулу объема звукового файла:
I = 26 * 22 * 210 * 15 * 22 * 21 / 223 = 15/4
Ближайшее целое, кратное двум — это число 4
Результат: 4
Тема: Кодирование видео
9_22: : ЕГЭ по информатике задание 9.22 (источник: К. Поляков, 9.1 вариант 47): Камера снимает видео без звука с частотой 120 кадров в секунду, при этом изображения используют палитру, содержащую 224 = 16 777 216 цветов. При записи файла на сервер полученное видео преобразуют так, что частота кадров уменьшается до 20, а изображения преобразуют в формат, использующий палитру из 256 цветов. Другие преобразования и иные методы сжатия не используются. 10 секунд преобразованного видео в среднем занимают 512 Кбайт.
Сколько Мбайт в среднем занимает 1 минута исходного видео?
Типовые задания для тренировки
✍ Решение:
- Посмотрим, как изменялись параметры файла до преобразования и после:
ДО: ƒ = 120, i = 24 бит ПОСЛЕ: ƒ = 20, i = 8 бит (28 = 256) t = 10 секунд I = 512 Кбайт = 29 Кбайт
- Поскольку после преобразования количество кадров в секунду уменьшилось в 6 раз (120 / 20 = 6), а количество бит на пиксель уменьшилось в 3 раза (24 / 8 = 3), то и объем уменьшился в целом в 18 раз (6 * 3 = 18).
- Вычислим объем файла, передаваемого за 10 секунд, до его преобразования:
Количество уникальных оттенков
Когда речь идет о цветовом компоненте, понятие может означать количество двоичных знаков на компонент — бит на канал или на цвет. Глубина цвета с большим значением может указывать на передачу цвета с таким высоким уровнем точности. В качестве альтернативы ее также называют пиксельной глубиной. Изображения с более высокой битовой глубиной могут кодировать больше оттенков или цветов, поскольку имеется больше комбинаций 0 и 1. Глубина цветов — это количество таких комбинаций. Чем больше бит на пиксель, тем лучше цветопередача и качество монитора. Пространственное разрешение экрана монитора можно вычислить по следующей формуле: произведение количества строк изображения на общую сумму точек в строке.
Разрешение экрана и пиксельная глубина
Понятия количества цветов и глубины цвета связаны с понятием разрешения монитора. Монитор может отображать графику в различном качестве. Глубина цвета и разрешение характеризуют качество изображения. Среди самых распространенных разрешений — 800 x 600, 1024 x 768, 1280 x 1024 пикселей на дюйм. Режим экрана и глубина цвета также зависят друг от друга. Зная один из параметров, можно рассчитать другой. Для изображения в градациях серого глубина бит определяет количество уникальных оттенков. Количество отображаемых цветов меняется в широком диапазоне. На современных мониторах и дисплеях глубина цвета — это параметр, который может принимать значение от 256 при глубине 8 бит до более чем 16 миллионов при глубине в 24.
Строение волоса
- видимую (волосяной стержень);
- невидимую (корень).
В процессе окрашивания волос задействована только видимая часть волоска, сразу перейдем к ее изучению. Волосяной стержень состоит из медуллы (сердцевины), кортекса (коркового вещества) и кутикулы (внешней оболочки).
Медулла — центральная часть волосяного стержня. Она представляет собой 2–4 слоя крупных неороговевших клеток кубической формы. Медулла выступает в роли терморегулятора: не допускает перегрев и переохлаждение в разное время года. Медулла невсегда сплошная, может прерываться. Это наблюдается в тонких волосах, где она на трети волосяного стержня отсутствует.
Кортекс — основная часть волосяного пространства. Корковое вещество представлено веретенообразными эпителиальными клетками. Качественные показатели составляющих кортекса отражаются на упругости, прочности, эластичности волос. Окислительные процессы при окрашивании, осветлении протекают непосредственно в корковом веществе.
Структура кортекса также обуславливает оттенок, качество волоса. Связано это с его составляющими:
- кератином или ороговевшими клетками, соединенными мембранно-клеточным комплексом. Подобный «каркас» придает волосяному стержню формы, делает его упругим и эластичным;
- меланином, собственно пигментными частицами;
- воздухом. Воздушные частицы — это «растворитель» натурального пигмента внутри волосяного стержня. Чем меньше воздуха, тем насыщеннее тон, а в седом волоске его больше всего.
Кутикула — это внешняя оболочка волоска, состоящая из 8–10 слоев. Слои сложены из чешуек (плоского бесцветного кератина), расположенных в шахматном порядке, словно соты, черепица. Связь между слоями также представлена мембранно-клеточным комплексом. Слои плотно соприкасаются друг с другом и обеспечивают надежную защиту от негативных факторов внешней среды.
Внешний вид волоса говорит о состоянии кутикулы:
- тусклые, пористые волосы — признак поврежденной внешней оболочки и раскрытых чешуек;
- здоровый блеск свидетельствует, что чешуйки достаточно плотно прилегают, не повреждены.
Основные цвета и их кодирование
Каждый цветной пиксель в цифровом изображении создается с помощью комбинации трех основных цветов: красного, зеленого и синего. Каждый основной цвет часто называют цветовым каналом. Он может иметь любой диапазон значений интенсивности, заданных его глубиной бита. Глубина бит для каждого основного цвета называется битами на канал. Бит на пиксель (bpp) относится к сумме двоичных знаков во всех трех цветовых каналах и представляет общие цвета, доступные на каждом пикселе. Часто возникает путаница с цветными изображениями, и может быть непонятно, относится ли размещенный номер к битам на пиксель или на канал. Использование bpp в качестве суффикса помогает различать эти два термина.
Примеры глубины цвета точки
У большинства цветных изображений с цифровых камер битовая глубина составляет 8 двоичных знаков на канал. Поэтому они могут использовать в общей сложности восемь 0 и 1. Глубина цвета и количество цветов при этом составляют 28 или 256 различных комбинаций, либо 256 различных значений интенсивности для каждого основного цвета. Когда все три основных цвета объединены в каждом пикселе, это позволяет использовать до 16 777 216 разных цветов, или “истинный цвет”. Такая глубина называется 24-битной, поскольку каждый пиксель состоит из трех каналов с глубиной цвета 8 бит. Количество цветов, доступных для любого X-битового изображения, равно 2X, если X относится к битам на пиксель, и 23X, если X относится к битам на канал.
Обработка внутри камеры
Когда вы настраиваете камеру на запись фотографий в режиме JPEG, внутренний процессор камеры считывает информацию, полученную от сенсора в момент, когда вы делаете снимок, обрабатывает ее в соответствии с параметрами, выставленными в меню камеры (баланс белого, контраст, насыщенность цвета и т.д.), и записывает ее как 8-битный JPEG файл. Вся дополнительная информация, полученная сенсором, отбрасывается и теряется навсегда. В итоге, вы используете лишь 8 бит из 12 или 14 возможных, которые сенсор способен зафиксировать.
Визуализация битовой глубины
Человеческий глаз может различать только около 10 миллионов разных цветов. Поэтому сохранение изображения, где глубина цвета — более 24 бит, является чрезмерным, если единственная цель — это обычный просмотр. С другой стороны, изображения с более чем 24 bpp все еще весьма полезны, поскольку они лучше сохраняются при пост-обработке. Потому этот параметр может быть полезен для фотографов. Цветные градации и палитру глубины цвета в изображениях с менее чем 8 бит на цветовой канал можно четко увидеть на гистограмме изображения. Доступные настройки битовой глубины зависят от типа файла. Стандартные файлы JPEG и TIFF могут использовать только 8 и 16 бит на канал соответственно.
Почему фотографы используют JPEG?
То, что не все профессиональные фотографы используют формат RAW все время, еще ничего не значит. Как свадебные, так и спортивные фотографы, например, зачастую работают именно с форматом JPEG.
Для свадебных фотографов, которые могут снять тысячи снимков на свадьбе, это экономит время на последующей обработке.
Спортивные фотографы используют JPEG файлы для того, чтобы иметь возможность отсылать фотографии своим графическим редакторам в течение мероприятия. В обоих случаях скорость, эффективность и меньший размер файлов формата JPEG делает использование этого типа файлов логичным.
Цветовая точность и гамма
Глубина цвета — это только один из аспектов цветового представления, определяющий, как можно выразить тонкие уровни цвета. Другим аспектом является то, как может быть выражен широкий диапазон цветов или гамма. Определение как цветовой точности, так и гаммы выполняется с помощью спецификации кодирования цвета, которая присваивает значение цифрового кода местоположению в цветовом пространстве.
Отличие графических чипов в системах VGA и Macintosh
Старые графические чипы, особенно те, которые используются в домашних компьютерах и игровых консолях, часто умеют применять другую палитру, чтобы увеличить максимальное количество одновременно отображаемых цветов. При этом использование памяти сводится к минимуму. Это важно для первых компьютеров, где память была дорогостоящей и не слишком большого объема. В то время как лучшие системы VGA предлагали только 18-битную палитру, из которой можно было выбирать цвета, все цветное видеооборудование Macintosh предоставляло 24-битную. Такие палитры были универсальными и могли применяться в любых последних аппаратных или файловых форматах.
Direct color
Если пиксели содержат более 12 бит, для типичных размеров экрана и глубины палитры индексированная палитра занимает больше памяти, чем пиксели, поэтому некоторые системы стараются напрямую указывать цвет непосредственно в пикселе. Например, 8-битный цвет — очень ограниченная, но истинная прямая цветовая система. Для каждого из компонентов R (красного цвета и G (зеленого цвета) есть 3 бита, 8 возможных уровней. При этом два оставшихся бита в байтовом пикселе — компонент B (синий цвет), занимающий четыре уровня, что позволяет использовать 256 разных цветов. Здоровый человеческий глаз менее чувствителен к синему компоненту, чем к красному или зеленому, потому что две трети рецепторов глаза обрабатывают более длинные волны. Поэтому он назначается на один двоичный знак меньше, чем остальные. 8-битный цвет можно перепутать с индексированной глубиной цвета 8bpp. Но этот параметр тоже можно моделировать в таких системах, выбирая подходящую таблицу.
High color
Высококачественная цветопередача, или режим High color, поддерживает 15/16-бит для трех цветов в системе RGB. В 16-битном цвете могут быть 4 бита, то есть 16 возможных уровней для каждого из компонентов R, G и B. А также дополнительно 4 двоичных знака для параметра «альфа», обозначающего прозрачность, что позволяет использовать 4 096 различных цветов с 16 уровнями прозрачности. В последнее время термин используется для обозначения глубин цвета, превышающих 24 бит. Он был разработан для представления и передачи “реальных” оттенков, которые воспринимаются человеческим глазом. Почти все наименее дорогие ЖК-дисплеи обеспечивают 18-битный цвет для достижения быстрого времени перехода по цвету и используют либо сглаживание, либо регулировку частоты кадров, чтобы приблизиться к 24-битной цветопередаче или полностью отбросить 6 бит информации о цвете. Более дорогие ЖК-дисплеи могут отображать 24-битную или большую глубину цвета.
Примечания
- ↑ 123
Rich Franzen, Color Spaces, 1998—2010 (англ.) - HDMI :: Resources :: Knowledge Base
- An Inside Look at DisplayPort v1.2
- VESA veröffentlicht DisplayPort 1.3
- Windows 7 High Color Support
- Mark Hachman
. HDMI Upgraded To Support ‘Deep Color’ (англ.), ExtremeTech (June 12, 2006). Проверено 19 июля 2020. - Том Копин (Kramer USA), Сергей Дмитренко.
Глубокие цветные проблемы (mv13deep-hdmi-ru) 28-29. журнал Mediavision (Май 2013). Проверено 19 июля 2020. - Hutchison, David C. (2006-04-05). «Wider color gamuts on DLP display systems through BrilliantColor technology». Digital TV DesignLine
. Проверено 2007-08-16. - ATI Launches The 1GB FireGL V7350 Video Card
Особенности человеческого восприятия цвета
Человеческий глаз может различать до десяти миллионов цветов, и поскольку гамма дисплея меньше, чем диапазон человеческого зрения, это означает, что этот диапазон содержит больше оттенков, чем может быть воспринято человеком. Однако дисплеи неравномерно распределяют цвета в пространстве для облегчения восприятия человеком, поэтому люди могут видеть изменения между соседними цветами в цветовой гамме. Монохроматические изображения устанавливают все три канала на одно и то же значение. В результате получается всего 256 различных цветов и, следовательно, более заметная полоса различия. Некоторое программное обеспечение пытается сгладить уровень серого в цветовых каналах, чтобы увеличить его, хотя в современном программном обеспечении это гораздо больше используется для субпиксельной визуализации. Она позволяет увеличить разрешение пространства на ЖК-экранах, где цвета имеют несколько разные позиции.
Использование глубины цвета в различных системах
Некоторые системы SGI имели 10 или более бит для видеосигнала и могли быть настроены для интерпретации данных, хранящихся таким образом для отображения. Часто для них добавляется альфа-канал того же размера, в результате получается 40, 48 или 64 бит для каждого пикселя. Некоторые более ранние системы размещали три 10-битных канала в 32-битном слове, причем 2 бита не использовались или использовались как 4-уровневый альфа-канал. Формат файла Cineon, который был популярен для движущихся изображений, использовал эту глубину цвета. Цифровые камеры могли производить 10 или 12 бит на канал в своих исходных данных, а 16 бит — это наименьшая адресуемая единица, которая позволяла бы обрабатывать данные.
Видеокарты с 10 бит на компонент начали выходить на рынок в конце 1990-х годов. Эти системы не использовали 16 бит для высокого динамического диапазона, а некоторые присваивают почти мистические возможности 16 битам, которые на самом деле не верны. Программное обеспечение для редактирования изображений, такое как Photoshop, начало использовать 16 бит на канал достаточно рано. Основная цель этого заключалась в том, чтобы уменьшить квантование промежуточных результатов. Если операция была разделена на 4, а затем умножена на 4, она потеряла бы нижние 2 бита 8-битных данных, но если использовались 16 бит, она не потеряла бы ни одного из 8-битных данных. В 2008 Microsoft объявила о том, что в Windows 7 поддерживаются цвета глубиной 30 бит и 48 бит, а также широкая цветовая гамма scRGB.
Доказано, поскольку люди в основном являются трихроматами, хотя существуют тетрахроматы, воспринимающие не три основных цвета, а четыре. Для хранения и работы с изображениями можно использовать «мнимые» основные цвета, но обычно их количество составляет три, как в системе RGB.
Постобработка
RAW файл отличается от JPEG тем, что содержит все данные, зафиксированные сенсором камеры за период экспонирования. Когда вы обрабатываете RAW файл, используя программное обеспечение для конвертации RAW, программа осуществляет преобразования, аналогичные тем, что производит внутренний процессор камеры, когда вы снимаете в JPEG. Различие состоит в том, что вы выставляете параметры внутри используемой программы, а те, что выставлены в меню камеры, игнорируются.
Выгода от дополнительной глубины бита RAW файла становится очевидной при постобработке. JPEG файл стоит использовать, если вы не собираетесь делать какую-либо постобработку и вам достаточно выставить экспозицию и все другие настройки во время съемки.
Однако, в реальности большинство из нас хочет внести хотя бы несколько исправлений, если это даже просто яркость и контраст. И это именно тот момент, когда JPEG файлы начинают уступать. С меньшим количеством информации на пиксель, когда вы проводите корректировку яркости, контраста или цветового баланса, оттенки могут визуально разделиться.
Результат наиболее очевиден в областях плавного и продолжительного перехода оттенков, таких как на голубом небе. Вместо мягкого градиента от светлого к темному, вы увидите расслоение на цветовые полосы. Этот эффект также известен как постеризация (англ. «posterisation»). Чем больше вы корректируете, тем сильнее он проявляется на изображении.
С файлом RAW, вы можете вносить гораздо более сильные изменения в оттенок цвета, яркость и контраст до того, как вы увидите снижение качества изображения. Это также позволяют сделать некоторые функции RAW-конвертера, такие как настройка баланса белого и восстановление «пересвеченных» областей (highlight recovery).
Это фото получено из JPEG файла. Даже при таком размере видны полосы в небе как результат постобработки.
При тщательном рассмотрении на небе виден эффект постеризации. Работа с 16-битным TIFF файлом может ликвидировать, или по крайней мере минимизировать, эффект полос.
Как определить глубину цвета изображения формула
разрешающая способность экрана,
Во всех подобных задачах требуется найти ту или иную величину.
Видеопамять — это специальная оперативная память, в которой формируется графическое изображение.
Объем видеопамяти рассчитывается по формуле: V=I*X*Y, где I – глубина цвета отдельной точки, X, Y – размеры экрана по горизонтали и по вертикали (произведение х на у – разрешающая способность экрана).
Экран дисплея может работать в двух основных режимах: текстовом и графическом .
В графическом режиме экран разделяется на отдельные светящиеся точки, количество которых зависит от типа дисплея, например 640 по горизонтали и 480 по вертикали. Светящиеся точки на экране обычно называют пикселями , их цвет и яркость может меняться. Графические режимы характеризуются такими показателями как:
— разрешающая способность (количество точек, с помощью которых на экране воспроизводится изображение) — типичные в настоящее время уровни разрешения 800*600 точек или 1024*768 точек.
— глубина цвета (количество бит, используемых для кодирования цвета точки), например, 8, 16, 24, 32 бита. Каждый цвет можно рассматривать как возможное состояние точки, Тогда количество цветов, отображаемых на экране монитора может быть вычислено по формуле K=2I , где K – количество цветов, I – глубина цвета или битовая глубина.
Кроме перечисленных выше знаний учащийся должен иметь представление о палитре:
— палитра (количество цветов, которые используются для воспроизведения изображения).
Виды информации и способы представления ее в компьютере.
В компьютере все виды информации кодируются на машинном языке, в виде логических последовательностей нулей и единиц.
Информация в компьютере представлена в двоичном коде, алфавит которого состоит из двух цифр (0 и 1). Каждая цифра машинного двоичного кода несет количество информации, равное 1 бит.
Например. Латинская буква А представлена в двоичном коде – 01000001.
Русская буква А представлена в двоичном коде — 10000000.
0 — 00110000
1 – 00110001
Задачи на кодирование информации:
уровень 1 — легкие (элементарные)
уровень 2 — простые
уровень 3 — средней сложности
10МБайт
Ответ:
5. Одна минута записи цифрового аудио-файла занимает на диске 1,3 Мб, разрядность звуковой платы — 8. С какой частотой дискретизации записан звук?
6. Две минуты записи цифрового аудио-файла занимают на диске 5,1 Мб. Частота дискретизации — 22050 Гц. Какова разрядность аудио-адаптера?
7. Объем свободной памяти на диске — 0,01 Гб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудио-файла, записанного с частотой дискретизации 44100 Гц?
8. Оцените информационный объем моноаудиофайла длительностью звучания 1 мин. если «глубина» кодирования и частота дискретизации звукового сигнала равны соответственно:
а) 16 бит и 8 кГц;
б) 16 бит и 24 кГц.
Решение:
а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 8 000 = 128000 бит = 16000 байт = 15,625 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
15,625 Кбайт/с х 60 с = 937,5 Кбайт
б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 24 000 = 384000 бит = 48000 байт = 46,875 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
46,875 Кбайт/с х 60 с =2812,5 Кбайт = 2,8 Мбайт
Ответ: а) 937,5 Кбайт; б) 2,8 Мбайт
9. Какой объем памяти требуется для хранения цифрового аудио-файла с записью звука высокого качества при условии, что время звучания составляет 3 минуты? (таблица)
10. Цифровой аудио-файл содержит запись звука низкого качества (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб? (таблица)
Определите максимальную глубину цвета в битах на пиксель которую можно использовать при фотосъемке
Для хранения растрового изображения нужно выделить в памяти I = n · i битов, где n – количество пикселей, i – глубина цвета (разрядность кодирования) Количество пикселей изображения n вычисляется как произведение ширины рисунка на высоту (в пикселях). Глубина кодирования – это количество бит, которые выделяются на хранение цвета одного пикселя. При глубине кодирования i битов на пиксель код каждого пикселя выбирается из 2i возможных вариантов, поэтому можно использовать не более 2i различных цветов 1 Мбайт = 220 байт = 223 бит, 1 Кбайт = 210 байт = 213 бит
Рисунок размером 512 на 256 пикселей занимает в памяти 64 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения. Дано: n = 512 * 256 I = 64 Кбайт N = ? Решение N = 2i I = i*n i = I / n N = 2i = 24 = 16 Ответ: максимальное возможное количество цветов 16.
2. Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 64 на 64 пикселов при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно. Дано: n = 64 * 64 N = 256 I = ? Решение N = 2i I = i*n N = 256 = 2i = 28 i = 8 бит Ответ: 4 Кбайт. I = 8 бит* 64*64 = 23*26*26 бит = 215 бит = 215 : 213 Кбайт = 22 Кбайт = 4 Кбайт
1) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 128 на 128 пикселов при условии, что в изображении могут использоваться 32 различных цвета? В ответе запишите только целое число, единицу измерения писать не нужно. 2) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 64 на 128 пикселов при условии, что в изображении могут использоваться 128 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно. 3) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 64 на 256 пикселов при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно. 4) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 32 на 1024 пикселов при условии, что в изображении могут использоваться 128 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно. 5) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 1024 на 512 пикселов при условии, что в изображении могут использоваться 64 различных цвета? В ответе запишите только целое число, единицу измерения писать не нужно.
Рисунок размером 128 на 256 пикселей занимает в памяти 24 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения. 2) Рисунок размером 128 на 128 пикселей занимает в памяти 10 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения. 3) Рисунок размером 64 на 128 пикселей занимает в памяти 7 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения. 4) Рисунок размером 64 на 256 пикселей занимает в памяти 16 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения. 5) Рисунок размером 32 на 1024 пикселей занимает в памяти 28 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
После преобразования растрового 256-цветного графического файла в черно-белый формат (2 цвета) его размер уменьшился на 7 Кбайт. Каков был размер исходного файла в Кбайтах? 2) После преобразования растрового 16-цветного графического файла в черно-белый формат (2 цвета) его размер уменьшился на 21 Кбайт. Каков был размер исходного файла в Кбайтах? 3) После преобразования растрового 256-цветного графического файла в 16-цветный формат его размер уменьшился на 15 Кбайт. Каков был размер исходного файла в Кбайтах? 4) После преобразования растрового 256-цветного графического файла в 4-цветный формат его размер уменьшился на 18 Кбайт. Каков был размер исходного файла в Кбайтах? 5)После преобразования растрового графического файла его объем уменьшился в 2 раза. Сколько цветов было в палитре первоначально, если после преобразования было получено растровое изображение того же разрешения в 16-цветной палитре?
Камера делает фотоснимки размером 16001200 пикселей. На хранение одного кадра отводится 3800 Кбайт. Определите максимальную глубину цвета (в битах на пиксель), которую можно использовать при фотосъёмке. 2) Камера делает фотоснимки размером 1280960 пикселей. На хранение одного кадра отводится 160 Кбайт. Найдите максимально возможное количество цветов в палитре изображения. 3) Камера делает фотоснимки размером 32001800 пикселей. На хранение одного кадра отводится 3 Мбайт. Найдите максимально возможное количество цветов в палитре изображения. 4) Камера делает фотоснимки размером 640480 пикселей. На хранение одного кадра отводится 250 Кбайт. Найдите максимально возможное количество цветов в палитре изображения. 5) Камера делает фотоснимки размером 16001200 пикселей. На хранение одного кадра отводится 1 Мбайт. Найдите максимально возможное количество цветов в палитре изображения.
Для хранения цветного изображения выделено 1,5 Мб памяти. Изображение имеет размер 1024х768 точек. Определить глубину цвета (в битах) изображения.
Блин, вроде задача простая, но в ответе получается 160 бит! Многовато-ведь!
__________________
Помощь в написании контрольных, курсовых и дипломных работ здесь
Определить глубину цвета представления сканера
Цветной сканер имеет разрешение 256 на 256 точек (пикселов) на дюйм. Объем памяти, занимаемой.
Как программно узнать глубину цвета изображения?
как программно узнать глубину цвета Bitmap??
Определить количество информации в битах
Вот мои попытки,только что-то тут не правильно. не знаю что! Задано кол-во информации в.
Решение
Извините, надо было сразу расчет привести.
Сначала находим размер картинки в битах:
1,5*1024*1024*8=12592912 бит
Затем находим кол-во точек:
1024*768=786432 точек
Потом банально делим одно на другое:
12592912/786432=16 бит
Во всем виновата моя невнимательность: я считал в калькуляторе для программистов и у меня получилось 125929120; оказывается, он не умеет ставить десятичную запятую, т.е. я умножал не на 1.5, а на 15. Вот и разница в 10 раз.
Всем огромное спасибо за советы!
Определить кол-во информации в тексте (8 битах)
Пользуясь предположением об одинаковой частоте употребления каждого из 32 — ух букв русского.
Определить сумму,которая в битах.(Задача на массив)
Добрый день. В чем суть данной задачи? Помогите с решением, а то ничего не понятно( Определить.
Определить глубину вложенности списка
Привет. Нужно сделать функцию, с одним аргументом — списком, которая возвращает глубину.
Двоичное дерево.(Определить глубину)
Определить глубину правого поддерева дерева. Ребят помогите , хотя бы в теории.
Автоматическая фотокамера производит растровые изображения размером 512 на 300 пикселей. При этом объём файла с изображением не может превышать 150 Кбайт, упаковка данных не производится. Какое максимальное количество цветов можно использовать в палитре?
Автоматическая фотокамера производит растровые изображения размером 1024 на 600 пикселей. При этом объём файла с изображением не может превышать 300 Кбайт, упаковка данных не производится. Какое максимальное количество цветов можно использовать в палитре?
Автоматическая фотокамера производит растровые изображения размером 768 на 600 пикселей. При этом объём файла с изображением не может превышать 450 Кбайт, упаковка данных не производится. Какое максимальное количество цветов можно использовать в палитре?
Автоматическая фотокамера производит растровые изображения размером 1200 на 900 пикселей. При этом объём файла с изображением не может превышать 900 Кбайт, упаковка данных не производится. Какое максимальное количество цветов можно использовать в палитре?
Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 640 на 320 пикселей при условии, что в изображении могут использоваться 64 различных цвета? В ответе запишите только целое число, единицу измерения писать не нужно.
Один пиксель кодируется 6 битами памяти, так как 2 6 = 64.
Автоматическая фотокамера производит растровые изображения размером 128 на 320 пикселей. При этом объём файла с изображением не может превышать 40 Кбайт, упаковка данных не производится. Какое максимальное количество цветов можно использовать в палитре?
Источник: ЕГЭ по информатике 13.06.2019. Основная волна, Восток. Вариант Имаева-Зубовой — «Котолис».
Для хранения произвольного растрового изображения размером 128×320 пикселей отведено 40 Кбайт памяти без учёта размера заголовка файла. Для кодирования цвета каждого пикселя используется одинаковое количество бит, коды пикселей записываются в файл один за другим без промежутков. Какое максимальное количество цветов можно использовать в изображении?
Источник: Демонстрационная версия ЕГЭ—2020 по информатике.
На снимок размером 1200 на 1024 пикселей в памяти выделено не более 1000 Кбайт. Найдите максимально возможное количество цветов в палитре изображения.
Источник: ЕГЭ по информатике 03.07.2020. Основная волна Источник: ЕГЭ по информатике 03.07.2020. Основная волна
Для хранения произвольного растрового изображения размером 128×320 пикселей отведено 20 Кбайт памяти без учёта размера заголовка файла. Для кодирования цвета каждого пикселя используется одинаковое количество бит, коды пикселей записываются в файл один за другим без промежутков. Какое максимальное количество цветов можно использовать в изображении?
Источник: Демонстрационная версия ЕГЭ—2021 по информатике., Демонстрационная версия ЕГЭ—2022 по информатике.
Для хранения произвольного растрового изображения размером 128×320 пикселей отведено 50 Кбайт памяти без учёта размера заголовка файла. Для кодирования цвета каждого пикселя используется одинаковое количество битов, коды пикселей записываются в файл один за другим без промежутков. Какое максимальное количество цветов можно использовать в изображении?
Автоматическая фотокамера с 400 Кбайт видеопамяти производит растровые изображения c фиксированным разрешением и 16-цветной палитрой. Сколько цветов можно будет использовать в палитре, если увеличить видеопамять до 800 Кбайт?
Теперь найдём, сколько Мбайт потребуется для хранения изображений, сделанных фотокамерой за сутки:
Что такое битовая глубина?
Перед тем, как сравнивать различные варианты, давайте сначала обсудим, что означает название. Бит является компьютерной единицей измерения, относящейся к хранению информации в виде 1 или 0. Один бит может иметь только одно из двух значений: 1 или 0, да или нет. Если бы это был пиксель, он был бы абсолютно черного или абсолютно белого цвета. Не очень полезно.
Так «битовая глубина» определяет малейшие изменения, которые вы можете сделать, относительно некоторого диапазона значений. Если наша шкала яркости от чистого черного до чистого белого имеет 4 значения, которые мы получаем от 2-битного цвета, то мы получим возможность использовать черный, темно-серый, светло серый и белый. Это довольно мало для фотографии. Но если у нас есть достаточное количество бит, мы имеем достаточно шагов с широким диапазоном серого, чтобы создать то, что мы будем видеть как совершенно гладкий градиент от черного к белому.
Ниже приведен пример сравнения черно-белого градиента на разной битовой глубине. Данное изображение – это просто пример. Нажмите на него, чтобы увидеть изображение в полном разрешении в формате JPEG2000 с разрядностью до 14 бит. В зависимости от качества вашего монитора, вы, вероятно, сможете увидеть только разницу до 8 или 10 бит.
Как понимать битовую глубину?
Было бы удобно, если бы все «битовые глубины» можно было сравнить непосредственно, но есть некоторые различия в терминологии, которые нужно понимать.
Вы бы могли предположить, что 16-бит означает 16-бит на канал в Photoshop, но в данном случае это работает иначе. Photoshop реально используется 16 бит на канал. Тем не менее, он относится к 16-разрядным снимкам по-другому. Он просто добавляет один бит к 15-битам. Это иногда называют 15+1 бит. Это означает, что вместо 2 16 возможных значений (что равнялось бы 65536 возможным значениям) существует только 2 15+1 возможных значений, что составляет 32768+1=32769.
Таким образом, с точки зрения качества, было бы справедливо сказать, что 16-битный режим Adobe, на самом деле содержит только 15-бит. Вы не верите? Посмотрите на 16-разрядную шкалу для панели Info в Photoshop, которая показывает масштаб 0-32768 (что означает 32769 значения учитывая ноль. Почему Adobe так делает? Согласно заявлению разработчика Adobe Криса Кокса, это позволяет Photoshop работать гораздо быстрее и обеспечивает точную среднюю точку для диапазона, который является полезным для режимов смешивания.
Далее мы будем говорить о битовой глубине в терминологии Photoshop.
Сколько бит вы можете увидеть?
Как всё это проверить? Для наглядности создадим документ шириной 16384 пикселей, что позволяет использовать ровно 1 пиксель для каждого значения в 14-битном градиенте. Специальный алгоритм создаёт градиенты с каждой битовой глубиной от 1 до 14 на изображении. Файл PSB весит более 20GB, поэтому поделиться им нет возможности. Но можно создать изображение в формате JPEG2000 с полным разрешением. При глубине цвета 16-бит вы не увидите разницы даже при экстремальном редактировании кривых. Удивительно, как этот файл JPEG2000 сжимает оригинальное изображение с 20Gb до 2Mb.
Не забудьте включить сглаживание в панели градиента, так как это лучше всего подходит для тестирования.
Важно также отметить, что вы, вероятно, столкнутся с ложной «полосатостью» при просмотре изображений на увеличении менее чем 67%.
Зачем использовать больше бит, чем вы можете увидеть?
Почему у нас есть варианты, даже больше, чем 10-бит в наших камерах и Photoshop? Если мы не редактировали фотографии, то не было бы никакой необходимости добавлять больше бит, чем человеческий глаз может видеть. Однако, когда мы начинаем редактирование фотографий, ранее скрытые различия могут легко вылезть наружу.
Если мы значительно осветлим тени или затемним блики, то мы увеличим некоторую часть динамического диапазона. И тогда любые недочёты станут более очевидны. Другими словами, увеличение контраста в изображении работает как уменьшение битовой глубины. Если мы будем достаточно сильно выкручивать параметры, на некоторых участках снимка может появиться полосатость. Она будет показывать переходы между цветами. Такие моменты обычно становятся заметны на чистом голубом небе или в тенях.
Всё дело в плавности редактирования. При работе с кривыми или другими инструментами вы получите больше шагов коррекции тонов и цветов. Переходы будут плавней в 16 бит. Поэтому, даже если разница не может быть изначально заметна, переход к меньшей битовой глубине цвета может стать серьезной проблемой позже, при редактировании изображения.
Так сколько бит действительно нужно в камере?
Изменение 4 стопов в обеспечит потерю чуть более 4 бит. Изменение 3 стопов экспозиции находится ближе к потере 2 бит. Как часто вам приходится настолько сильно корректировать экспозицию? При работе с RAW коррекция до +/- 4 стопа – это экстремальная и редкая ситуация, но такое случается, поэтому желательно иметь дополнительные 4-5 бит над пределами видимого диапазонов, чтобы иметь запас. При нормальном диапазоне 9-10 бит, с запасом нормой может быть примерно 14-15 бит.
На самом деле, вы, вероятно, никогда не будете нуждаться в таком большом количестве данных по нескольким причинам:
- Есть не так много ситуаций, когда вы встретите идеальный градиент. Ясное голубое небо, вероятно, наиболее частый пример. Все остальные ситуации имеют большое количество деталей и переходы цветов не плавные, поэтому вы не увидите разницу при использовании различной битовой глубины.
- Точность вашей камеры не так высока, чтобы обеспечить точность цветопередачи. Другими словами, в изображении есть шум. Из-за этого шума обычно намного сложнее увидеть переходы между цветами. Получается, что реальные изображения обычно не способны отобразить переходы цвета в градиентах, так как камера не способны запечатлеть идеальный градиент, который можно создать программно.
- Вы можете удалить переходы цветов во время пост-обработки при помощи использования размытия по Гауссу и добавления шума.
- Большой запас бит нужен только для экстремальных тональных поправок.
Принимая все это во внимание, 12-бит звучит как очень разумный уровень детализации, который позволил бы выполнять отличную постобработку. Тем не менее, камера и человеческий глаз по-разному реагирует на свет. Человеческий глаз более чувствителен к тени.
Интересный факт заключается в том, что многое зависит от программы, которую вы используете для постобработки. К примеру, при вытягивании теней из одного и того же изображения в Capture One (CO) и в Lightroom можно получить разные результаты. На практике оказалось, что СО больше портит глубокие тени, чем аналог от Adobe. Таким образом, если вы вытягиваете в LR, то можно рассчитывать на 5 стопов, а в CO – всего на 4.
Но всё таки, лучше избегать попыток вытянуть более 3 стопов динамического диапазона из-за шума и изменения цветового оттенка. 12-бит, безусловно, разумный выбор. Если вы заботитесь о качестве, а не размере файла, то снимайте в 14-битном режиме, если ваша камера позволяет.
Сколько бит стоит использовать в Photoshop?
Нет никакого смысла использовать 32-битный режим, если вы не обрабатываете файл HDR.
Сколько бит нужно для интернета?
Преимущества 16 бит заключаются в расширении возможностей редактирования. Преобразование окончательного отредактированного изображения в 8 бит прекрасно подходит для просмотра снимков и имеет преимущество в создании небольших файлов для интернета для более быстрой загрузки. Убедитесь, что сглаживание в Photoshop включено. Если вы используете Lightroom для экспорта в JPG, сглаживание используется автоматически. Это помогает добавить немного шума, который должен свести к минимуму риск появления заметных переходов цвета в 8 бит.
Сколько бит нужно для печати?
Если ваша лаборатория печати принимает 16-битный формат (TIFF, PSD, JPEG2000), просто спросите у специалистов какие файлы предпочтительны.
В чем разница между битовой глубиной и цветовым пространством?
Битовая глубина определяет число возможных значений. Цветовое пространство определяет максимальные значения или диапазон (обычно известные как «гамма»). Если вам нужно использовать коробку цветных карандашей в качестве примера, большая битовая глубина будет выражаться в большем количестве оттенков, а больший диапазон будет выражаться как более насыщенные цвета независимо от количества карандашей.
Чтобы посмотреть на разницу, рассмотрим следующий упрощенный визуальный пример:
Как вы можете видеть, увеличивая битовую глубину мы снижаем риск появления полос перехода цвета. Расширяя цветовое пространство (шире гамма) мы сможем использовать более экстремальные цвета.
Как цветовое пространство влияет на битовую глубину?
Цветовое пространство (диапазон, в котором применяются биты), поэтому очень большая гамма теоретически может вызвать полосатость, связанную с переходами цвета, если она растягивается слишком сильно. Помните, что биты определяют количество переходов по отношению к диапазону цвета. Таким образом, риск получить визуально заметные переходы увеличивается с расширением гаммы.
Рекомендуемые настройки, чтобы избежать полосатости
После всего этого обсуждения можно сделать заключение в виде рекомендаций, которых стоит придерживаться, чтобы избежать проблем с переходами цветов в градиентах.
- 14+ бит RAW файл является хорошим выбором, если вы хотите, наилучшее качество, особенно если вы рассчитываете на корректировку тона и яркости, например, увеличение яркости в тенях на 3-4 стопа.
- 12-битный RAW файл отлично подойдёт, если вы хотите иметь меньший вес файлов или снимать быстрее. Для камеры Nikon D850 14-битный RAW файл примерно на 30% больше, чем 12-битный, так что это является важным фактором. И большие файлы могут повлиять на возможность снимать длинные серии кадров без переполнения буфера памяти.
- Никогда не снимайте в JPG, если вы можете. Если вы снимаете какие-то события, когда нужно быстро передавать файлы и качество снимков не играет роли, то конечно Jpeg будет отличным вариантом. Также вы можете рассмотреть возможность съёмки в режиме JPG + RAW, если вам нужен более качественный файл впоследствии. Стоит придерживаться цветового пространства SRGB, если вы снимаете в JPG. Если вы снимаете в RAW, вы можете игнорировать настройки цветового пространства. Файлы RAW в действительности не имеют цветового пространства. Оно не устанавливается, пока не выполнена конвертация файла RAW в другой формат.
Lightroom и Photoshop (рабочие файлы):
Экспорт для интернета:
- JPG с 8 битами и цветовым пространством sRGB идеально подходит для интернета. В то время как некоторые мониторы способны отображать большую битовую глубину, увеличенный размер файла, вероятно, не стоит этого. И в то время как все больше и больше мониторов поддерживают более широкие гаммы, не все браузеры правильно поддерживают управление цветом и могут отображать изображения неправильно. И большинство из этих новых мониторов вероятно никогда не проходили калибровку цвета.
Взгляд в будущее
В данный момент выбор большей битовой глубины для вас может не иметь значения, так как ваш монитор и принтер способны работать только в 8 бит, но в будущем всё может измениться. Ваш новый монитор сможет отображать больше цветов, а печать можно осуществить на профессиональном оборудовании. Сохраняйте свои рабочие файлы в 16-бит. Этого будет достаточно, чтобы сохранить наилучшее качество на будущее. Этого будет достаточно, чтобы удовлетворить требованиям всех мониторов и принтеров, которые будут появляться в обозримом будущем. Этого диапазона цвета достаточно, чтобы выйти за пределы диапазона зрения человека.
Однако гамма – это другое. Скорее всего, у вас есть монитор с цветовой гаммой sRGB. Если он поддерживает более широкий спектр Adobe RGB или гамму P3, то вам лучше работать с этими гаммами. Adobe RGB имеет расширенный диапазон цвета в синем, голубом и зелёном, а P3 предлагает более широкие цвета в красном, желтом и зеленом. Помимо P3 мониторов существуют коммерческие принтеры, которые превышают гамму AdobeRGB. sRGB и AdobeRGB уже не в состоянии охватить полный диапазон цветов, которые могут быть воссозданы на мониторе или принтере. По этой причине, стоит использовать более широкий диапазон цвета, если вы рассчитываете на печать или просмотр снимков на лучших принтерах и мониторах позже. Для этого подойдёт гамма ProPhoto RGB. И, как обсуждалось выше, более широкая гамма нуждается в большей битовой глубине 16-бит.
Как удалить полосатость
Если вы будете следовать рекомендациям из этой статьи, очень маловероятно, что вы столкнетесь с полосатостью в градиентах.
- Преобразуйте слой в смарт-объект.
- Добавьте размытие по Гауссу. Радиус установите таким, чтобы скрыть полосатость. Радиус, равный ширине полосатости в пикселях идеален.
- Используйте маску, чтобы применить размытие только там, где это необходимо.
- И, наконец, добавьте немного шума. Зернистость устраняет вид гладкого размытия и делает снимок более целостным. Если вы используете Photoshop CC, используйте фильтр Camera RAW, чтобы добавить шум.
Об авторе: Greg Benz – фотограф из Миннеаполиса, штат Миннесота. Мнения, выраженные в этой статье принадлежат исключительно автору. Вы можете узнать больше о его работах на сайте
Следите за новостями: Facebook, Вконтакте и Telegram
Проверяемые элементы содержания: Умение определять объём памяти, необходимый для хранения графической и звуковой информации
Плейлист видеоразборов задания на YouTube:
Задание демонстрационного варианта 2022 года ФИПИ
Тема: Кодирование изображений
ЕГЭ по информатике 2017 задание 7 (9) ФИПИ вариант 1 (Крылов С.С., Чуркина Т.Е.):
Какой минимальный объем памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 160 х 160 пикселей при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
Тема: Кодирование изображений
ЕГЭ по информатике задание 9.2 (источник: 9.1 вариант 11, К. Поляков):
Рисунок размером 128 на 256 пикселей занимает в памяти 24 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
Тема: Кодирование изображений
ЕГЭ по информатике задание 9.3 (источник: 9.1 вариант 24, К. Поляков):
После преобразования растрового 256-цветного графического файла в 4-цветный формат его размер уменьшился на 18 Кбайт. Каков был размер исходного файла в Кбайтах?
Тема: Кодирование изображений
ЕГЭ по информатике задание 7.4 (источник: 9.1 вариант 28, К. Поляков, С. Логинова):
Цветное изображение было оцифровано и сохранено в виде файла без использования сжатия данных. Размер полученного файла – 42 Мбайт. Затем то же изображение было оцифровано повторно с разрешением в 2 раза меньше и глубиной кодирования цвета увеличили в 4 раза больше по сравнению с первоначальными параметрами. Сжатие данных не производилось. Укажите размер файла в Мбайт, полученного при повторной оцифровке.
Тема: Кодирование изображений и скорость передачи
ЕГЭ по информатике задание 7.5 (источник: 9.1 вариант 30, К. Поляков, С. Логинова):
Изображение было оцифровано и сохранено в виде растрового файла. Получившийся файл был передан в город А по каналу связи за 72 секунды. Затем то же изображение было оцифровано повторно с разрешением в 2 раза больше и глубиной кодирования цвета в 3 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б, пропускная способность канала связи с городом Б в 3 раза выше, чем канала связи с городом А.
Сколько секунд длилась передача файла в город Б?
Тема: Кодирование изображений
ЕГЭ по информатике задание 7.6 (источник: 9.1 вариант 33, К. Поляков):
Камера делает фотоснимки размером 1024 х 768 пикселей. На хранение одного кадра отводится 900 Кбайт.
Найдите максимально возможное количество цветов в палитре изображения.
- Количество цветов зависит от глубины кодирования цвета, которая измеряется в битах. Для хранения кадра, т.е. общего количества пикселей выделено 900 Кбайт. Переведем в биты:
- Посчитаем общее количество пикселей (из заданного размера):
- Определим объем памяти, необходимый для хранения не общего количества пикселей, а одного пикселя ([память для кадра]/[кол-во пикселей]):
Тема: Кодирование изображений
7 (9) задание. Демоверсия ЕГЭ 2018 информатика:
Автоматическая фотокамера производит растровые изображения размером 640×480 пикселей. При этом объём файла с изображением не может превышать 320 Кбайт, упаковка данных не производится.
Какое максимальное количество цветов можно использовать в палитре?
7_21: : ЕГЭ по информатике задание 9.21 (источник: К. Поляков, 9.1 вариант 58):
Для хранения в информационной системе документы сканируются с разрешением 300 ppi. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет 5 Мбайт. В целях экономии было решено перейти на разрешение 150 ppi и цветовую систему, содержащую 16 цветов. Средний размер документа, отсканированного с изменёнными параметрами, составляет 512 Кбайт.
Определите количество цветов в палитре до оптимизации.
Тема: Кодирование звука
ЕГЭ по информатике 2017 задание 7 (9) ФИПИ вариант 15 (Крылов С.С., Чуркина Т.Е.):
На студии при четырехканальной (квадро) звукозаписи с 32-битным разрешением за 30 секунд был записан звуковой файл. Сжатие данных не производилось. Известно, что размер файла оказался 7500 Кбайт.
С какой частотой дискретизации (в кГц) велась запись? В качестве ответа укажите только число, единицы измерения указывать не нужно.
Тема: Кодирование звука и скорость передачи
ЕГЭ по информатике задание 7.9 (источник: 9.2 вариант 36, К. Поляков):
Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 2 раза выше и частотой дискретизации в 3 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 15 секунд; пропускная способность канала связи с городом Б в 4 раза выше, чем канала связи с городом А.
Сколько секунд длилась передача файла в город A? В ответе запишите только целое число, единицу измерения писать не нужно.
- Для решения понадобится формула нахождения скорости передачи данных формулы:
где:
I — объем
β — глубина кодирования
ƒ — частота дискретизации
t — время
S — кол-во каналов (если не указывается, то моно)
\[ t_А = \frac * 3 * 4 \]
Тема: Кодирование звука
ЕГЭ по информатике задание 7.10 (источник: 9.2 вариант 43, К. Поляков):
Музыкальный фрагмент был записан в формате стерео (двухканальная запись), оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла – 30 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате моно и оцифрован с разрешением в 2 раза выше и частотой дискретизации в 1,5 раза меньше, чем в первый раз. Сжатие данных не производилось.
Укажите размер файла в Мбайт, полученного при повторной записи. В ответе запишите только целое число, единицу измерения писать не нужно.
I — объем
β — глубина кодирования
ƒ — частота дискретизации
t — время
S -количество каналов
Тема: Кодирование звука и скорость передачи
ЕГЭ по информатике задание 7.11 (источник: 9.2 вариант 72, К. Поляков):
Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 100 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 3 раза выше и частотой дискретизации в 4 раз меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 15 секунд.
Во сколько раз скорость (пропускная способность канала) в город Б больше пропускной способности канала в город А?
I — объем
β — глубина кодирования
ƒ — частота дискретизации
t — время
Тема: Кодирование звука
ЕГЭ по информатике задание 7.12 (источник: 9.2 вариант 80, К. Поляков):
Производится четырёхканальная (квадро) звукозапись с частотой дискретизации 32 кГц и 32-битным разрешением. Запись длится 2 минуты, её результаты записываются в файл, сжатие данных не производится.
Определите приблизительно размер полученного файла (в Мбайт). В качестве ответа укажите ближайшее к размеру файла целое число, кратное 10.
I — объем
β — глубина кодирования
ƒ — частота дискретизации
t — время
S — количество каналов
Тема: Кодирование звука
Государственный выпускной экзамен ГВЭ 2018 (информатика ГВЭ ФИПИ, задание 7):
Производится двухканальная (стерео) цифровая звукозапись. Значение сигнала фиксируется 48 000 раз в секунду, для записи каждого значения используется 32 бит. Запись длится 5 минут, её результаты записываются в файл, сжатие данных не производится.
Какая из приведённых ниже величин наиболее близка к размеру полученного файла?
1) 14 Мбайт
2) 28 Мбайт
3) 55 Мбайт
4) 110 Мбайт
Тема: Кодирование звука
Решение 7 задания ЕГЭ по информатике (диагностический вариант экзаменационной работы 2018 года, С.С. Крылов, Д.М. Ушаков):
Производится двухканальная (стерео) звукозапись с частотой дискретизации 4 кГц и 64-битным разрешением. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится.
Определите приблизительно размер получившегося файла (в Мбайтах). В качестве ответа укажите ближайшее к размеру файла целое число, кратное 2.
Тема: Кодирование видео
7_22: : ЕГЭ по информатике задание 9.22 (источник: К. Поляков, 9.1 вариант 47):
Камера снимает видео без звука с частотой 120 кадров в секунду, при этом изображения используют палитру, содержащую 2 24 = 16 777 216 цветов. При записи файла на сервер полученное видео преобразуют так, что частота кадров уменьшается до 20, а изображения преобразуют в формат, использующий палитру из 256 цветов. Другие преобразования и иные методы сжатия не используются. 10 секунд преобразованного видео в среднем занимают 512 Кбайт.
Сколько Мбайт в среднем занимает 1 минута исходного видео?
- Посмотрим, как изменялись параметры файла до преобразования и после:
- Поскольку после преобразования количество кадров в секунду уменьшилось в 6 раз (120 / 20 = 6), а количество бит на пиксель уменьшилось в 3 раза (24 / 8 = 3), то и объем уменьшился в целом в 18 раз (6 * 3 = 18).
- Вычислим объем файла, передаваемого за 10 секунд, до его преобразования:
- Чтобы получить объем, переданный за 1 минуту, необходимо полученное значение умножить на 6:
Тема: Скорость передачи
ЕГЭ по информатике задание 7.13 (источник: 9.V вариант 5, К. Поляков):
Скорость передачи данных через ADSL-соединение равна 128000 бит/с. Передача текстового файла через это соединение заняла 1 минуту. Определите, сколько символов содержал переданный текст, если известно, что он был представлен в 16-битной кодировке Unicode.
* Вместо Q можно использовать обозначение I (для объема файла)
Тема: Скорость передачи
ЕГЭ по информатике задание 9.14 (источник: 9.V вариант 23, К. Поляков):
У Васи есть доступ к Интернет по высокоскоростному одностороннему радиоканалу, обеспечивающему скорость получения им информации 2 17 бит в секунду. У Пети нет скоростного доступа в Интернет, но есть возможность получать информацию от Васи по низкоскоростному телефонному каналу со средней скоростью 2 16 бит в секунду. Петя договорился с Васей, что тот будет скачивать для него данные объемом 8 Мбайт по высокоскоростному каналу и ретранслировать их Пете по низкоскоростному каналу. Компьютер Васи может начать ретрансляцию данных не раньше, чем им будут получены первые 1024 Кбайт этих данных.
Каков минимально возможный промежуток времени (в секундах), с момента начала скачивания Васей данных, до полного их получения Петей?
* Вместо Q можно использовать обозначение I (для объема файла)
Тема: Скорость передачи и кодирование изображений
ЕГЭ по информатике задание 7.15 (источник: 9.V вариант 28, К. Поляков):
* Вместо Q можно использовать обозначение I (для объема файла)
Тема: Скорость передачи
ЕГЭ по информатике задание 7.16 (источник: 9.V вариант 34, К. Поляков):
Каково время (в минутах) передачи полного объема данных по каналу связи, если известно, что передано 9000 Мбайт данных, причем треть времени передача шла со скоростью 60 Мбит в секунду, а остальное время – со скоростью 90 Мбит в секунду?
* Вместо Q можно использовать обозначение I (для объема файла)
Тема: Скорость передачи
ЕГЭ по информатике задание 7.17 (источник: 9.V вариант 43, К. Поляков):
Документ объемом 5 Мбайт можно передать с одного компьютера на другой двумя способами:
А) Сжать архиватором, передать архив по каналу связи, распаковать
Б) Передать по каналу связи без использования архиватора.
Какой способ быстрее и насколько, если
- средняя скорость передачи данных по каналу связи составляет 2 18 бит в секунду,
- объем сжатого архиватором документа равен 20% от исходного,
- время, требуемое на сжатие документа – 7 секунд, на распаковку – 1 секунда?
В ответе напишите букву А, если способ А быстрее или Б, если быстрее способ Б. Сразу после буквы напишите количество секунд, насколько один способ быстрее другого.
Так, например, если способ Б быстрее способа А на 23 секунды, в ответе нужно написать Б23.
Рассмотрим способ Б:
Тема: Скорость передачи
ЕГЭ по информатике задание 7.18 (источник: 9.V вариант 72, К. Поляков):
Документ объёмом 20 Мбайт можно передать с одного компьютера на другой двумя способами:
А) сжать архиватором-1, передать архив по каналу связи, распаковать;
Б) сжать архиватором-2, передать архив по каналу связи, распаковать;
Какой способ быстрее и насколько, если
В ответе напишите букву А, если способ А быстрее или Б, если быстрее способ Б. Сразу после буквы напишите количество секунд, насколько один способ быстрее другого.
Так, например, если способ Б быстрее способа А на 23 секунды, в ответе нужно написать Б23.
Рассмотрим способ Б:
Тема: Скорость передачи
Решение 7 ЕГЭ по информатике, задание 7_19 (источник: Тематические тренировочные задания, 2020 г., Самылкина Н.Н., Синицкая И.В., Соболева В.В.):
Документ (без упаковки) можно передать по каналу связи с одного компьютера на другой за 1 минуту и 40 секунд. Если предварительно упаковать документ архиватором, передать упакованный документ, а потом распаковать на компьютере получателя, то общее время передачи (включая упаковку и распаковку) составит 30 секунд. При этом на упаковку и распаковку данных всего ушло 10 секунд. Размер исходного документа 45 Мбайт.
Чему равен размер упакованного документа (в Мбайт)?
Рубрики:
MrRaven
Задание 9_7: Опечатка в степенях, где 7500 * 2^10 * (2^2) должно быть (2^3)