Как посчитать погрешность периода колебаний
Перейти к содержимому

Как посчитать погрешность периода колебаний

  • автор:

Период колебаний

Колебания — это движения или процессы, которые повторяются с определенным интервалом времени.

Систему, совершающую колебания, называют колебательной системой или осциллятором.

Исходя из физической природы, колебательные процессы бывают механического, электромагнитного и других видов.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Свободные или собственные колебания — колебания, которые наблюдают в системе, предоставленной себе после выведения из равновесного состояния.

Вынужденными колебаниями называют колебания, происходящие под действием внешней силы, изменяющейся периодически.

При механических колебаниях, которые относят к категории вынужденных:

Гармоническими колебаниями называют колебания, определяемые физической величиной, которая изменяется, согласно закону синуса или косинуса.

Разные периодические процессы, повторяющиеся в течение равных временных интервалов, могут быть записаны в виде суммы или суперпозиции гармонических колебаний.

Определение периода колебаний, формула

Колебательный процесс можно представить в виде уравнения. Тогда гармоническое колебание значения х будет представлено следующей формулой:

\(x(t)=A\times \cos \left(\omega _t+\phi _ \right)\)

Где \(x(t)\) является отклонением колеблющейся физической величины от равновесного значения;

А представляет собой амплитуду гармонических колебаний;

\(\omega _\) равно циклической или круговой частоте колебаний;

\(\phi _\) является начальной фазой колебаний, характерной для момента времени t=0, что можно определить с помощью выбора начала отсчета времени;

\(cp(t)=(co_t+cp_)\) описывает фазу колебаний в момент времени t, определяется в радианах, соответствует значению колеблющейся величины в данное время.

В случае, когда имеется какая-либо материальная точка с массой m, характеристика х будет соответствовать смещению тела из равновесного положения. Следует заметить, что амплитуда и частота гармонических колебаний обладают постоянными значениями. Исходя из того, что cos меняет значение в интервале от +1 до -1, параметр х будет изменяться от +А до –А. Так как:

\(\cos \left(\alpha +2\pi \right)=\cos \alpha,\)

то х остается без изменений при фазе колебаний, получающей приращение в $$2\pi$$

Период колебаний Т представляет собой минимальный временной интервал, в течение которого колебательная система возвращается в то состояние, в котором она находилась в начальный момент времени, определенный произвольно.

В этом случае фаза будет увеличена на \(2\pi:\)

\(\omega _(t+T)+\phi _=\left(\omega _t+\phi _ \right)+2\pi\)

Из данного равенства можно вычислить период колебаний:

Частота колебаний v является величиной, которая обратна периоду колебаний. Это количество полных колебаний, выполняемых за единицу времени:

249.png

На графике изображены гармонические колебания, где а — зависимость смещения х от времени /, б — зависимость скорости vx от времени С, в — зависимость ускорения ах от времени t.

Единицей частоты в СИ является герц (Гц). Это частота периодического периода, в котором в течение 1 секунды выполняется одно полное колебание.

Можно представить, что материальная точка совершает прямолинейные гармонические колебания, относительно оси Х около равновесного положения, которое является началом отсчета координат. Так как движения частицы колебательные, ей присуще скорость и ускорение. Характеристики данного процесса будут записаны таким образом:

Смещение \(x=A\times \cos \left(\omega _t+\phi _ \right)\)

Скорость \(v_=\dot=-A\omega _\times \sin \left(\omega _ t+\phi_ \right)=A\omega _\times \cos \left(\omega _ t+\phi_ +\frac<\pi >\right)\)

\(a_=\dot=\ddot=-A\omega _\times \cos \left(\omega _ t+\phi_ \right)=A\omega _^\times \cos \left(\omega _ t+\phi_ +\pi \right)\)

Как найти период для физического маятника

В случае, когда углы отклонения \(\varphi\) небольшие, физический маятник будет совершать гармонические колебания. Можно считать его вес, приложенным к центру тяжести в точке С. Сила возврата маятника в равновесное положение является составляющей силы тяжести — сила F:

\(F=mg\times \sin \varphi\)

Отрицательное значение правой части уравнения означает, что сила F ориентирована по направлению уменьшения угла \(\alpha\)

Учитывая малый угол \(\varphi\) уравнение можно записать в следующем виде:

С помощью основного уравнения динамики, описывающее вращательное движение, можно вывести закон движения физического маятника:

При условии невозможности определения момента силы в явном виде, дифференциальное уравнение колебаний физического маятника будет записано в такой форме:

В результате сравнения полученного выражения и уравнения гармонических колебаний, получим:

Таким образом, получается, что формула циклической частоты пружинного маятника имеет следующий вид:

В таком случае для расчета периода колебаний математического маятника будет использоваться формула:

Исходя из расчетов, можно сделать следующие выводы:

  1. Период пружинного маятника \(T =2\pi \sqrt>\)
  2. Период математического маятника \(T =2\pi \sqrt>\)
  3. Период крутильного маятника \(T =2\pi \sqrt>\)

В приведенных формулах:

  • T — период физического маятника;
  • J — момент силы маятника относительно оси вращения;
  • l — расстояние от оси вращения до центра масс;
  • m — масса маятника;
  • g=9.8 — ускорение свободного падения.

Примеры решений

Шариком, привязанным к нити, совершено 60 колебаний в течение 2 минут. Необходимо определить, каковы период и частота колебаний шарика.

Ответ: период колебаний маятника равен 2 секундам, а частота составляет 0,5 Гц.

Согласно изображенного графика зависимости координаты от времени, необходимо рассчитать характеристики колебательного движения тела.

график

\(x(t)=A\sin 2\pi Vt=0.2\sin 2\pi \times 1.25t=0.2\sin 2.5\pi t\)

Ответ: амплитуда колебаний маятника составляет 0,2 метра, период колебаний соответствует 0,8 с, частота колебаний равна 1,25 Гц, уравнение координаты будет записано в следующем виде: \(x(t)=0.2\sin 2.5\pi t\)

Необходимо определить, какой длиной обладает математический маятник, который совершает гармонические колебания при частоте 0,5 Гц на поверхности Луны. Ускорение свободного падения в данном случае составляет 1,6 м/с2.

Период колебаний математического маятника рассчитывается по формуле:

Для того чтобы выразить длину маятника, необходимо возвести обе части равенства в квадрат:

Ответ: длина математического маятника примерно составляет 0,16 метра.

Насколько полезной была для вас статья?

Период колебаний, формула

Повторяющиеся движения или процессы, которые воспроизводят все состояния предыдущего цикла являются периодическими. Одной из характеристик периодических процессов или колебаний является период.

Период колебаний — Это время за которое периодический процесс проходит полностью один цикл.

Период колебаний, формула

Для того чтобы найти период колебаний, необходимо взять определенный временной интервал и подсчитать количество циклов, после чего воспользоваться формулой:

∆t определенный временной интервал, секунд
N количество циклов, шт.
f частота колебаний (число циклов в одну секунду), Герц

\[ T = \frac<∆t> = \frac \]

Пример определения периода колебаний

Например возьмем кусочек пластилина и подвесим его на нитке. Отведем нитку от положения равновесия и отпустим. На сотовом телефоне в момент отпускания запустим секундомер. Отсчитаем 10 циклов, т.е. нить 10 раз вернется в ту же точку из которой мы ее отпустили. Секундомер показал 14.35 секунд, соответственно приблизительный период колебаний нити 1.435 секунд.

Период колебаний

Важнейшим параметром, требуемым при расчетах колебательных и волновых процессов, является период колебаний. Он входит во многие формулы, и является одним из базовых. Рассмотрим это понятие.

Колебательный процесс

Одними из самых частых процессов в Природе являются колебательные. Как правило, любой колебательный процесс состоит в том, что некоторый параметр рассматриваемой системы изменяет свое значение, периодически отклоняясь то в одну, то в другую сторону от некоторого положения равновесия.

Колебательные процессы в природе

Колебания маятника

Простейший пример колебательного процесса – маятник, легкая нить с грузом на конце. Отклоним его от равновесия в крайнее положение, а потом отпустим (чтобы уменьшить влияние трения, отклонение должно быть намного меньше длины нити).

Груз, начнет движение к противоположной крайней точке. Здесь его скорость упадет до нуля, и он качнется в обратную сторону до начального положения. (Реальный маятник имеет потери на трение, и немного не дойдет до начальной точки, но этим небольшим отклонением можно пренебречь).

Полное движение, которое начинается от начальной точки и продолжается до ближайшего возвращение в нее, называется колебанием.

Период колебаний

Если сравнить несколько последовательных колебаний, то можно заметить, что они очень похожи. При этом каждое колебание длится одно и то же время.

Время за которое происходит одно колебание, называется периодом колебаний. Обозначается большой латинской буквой $Т$.

Напомним, время в системе СИ измеряется в секундах. Если период очень мал, берутся дробные единицы – миллисекунда (мс, $ 10^$ сек), микросекунда (мкс, $ 10^$ сек), наносекунда (нс, $ 10^$ сек)

Как правило, измерить период одного колебания не всегда легко, поскольку маятник непрерывно движется. Однако, учитывая, что все колебания маятника одинаковы, для определения периода колебания можно произвести расчет, исходя из нескольких колебаний.

Формула периода колебаний имеет вид:

  • N – число колебаний;
  • t – время, за которое эти колебания были совершены (сек).

Человек непосредственно может различать периоды колебаний от 50 микросекунд (самый высокий звук) до десятилетий (например, 12 лет – год на Юпитере). А в хозяйстве и технике человек может иметь дело с периодами колебаний от $10^$ нс (период рентгеновского излучения) и до 250 млн. лет (время обращения Солнечной Системы вокруг центра нашей галактики).

Что мы узнали?

Одно колебание маятника (или другого колеблющегося объекта) – это движение от точки максимального отклонения и до возвращения в эту точку. Время, за которое совершается одно колебание, называется периодом колебаний.

Как найти погрешность

Соавтор(ы): Grace Imson, MA. Грейс Имсон — преподаватель математики с более чем 40 годами опыта. В настоящее время преподает математику в Городском колледже Сан-Франциско, ранее работала на кафедре математики в Сент-Луисском университете. Преподавала математику на уровне начальной, средней и старшей школы, а также колледжа. Имеет магистерскую степень по педагогике со специализацией на руководстве и контроле, полученную в Сент-Луисском университете.

Количество просмотров этой статьи: 116 252.

В этой статье:

При измерении чего-либо можно предположить, что есть некоторое «истинное значение», которое лежит в пределах диапазона значений, которые вы нашли. Для расчета более точной величины нужно взять результат измерения и оценить его при прибавлении или вычитании погрешности. Если вы хотите научиться находить такую погрешность, выполните следующие действия.

Метод 1 из 3:

Основы

Step 1 Выражайте погрешность правильно.

  • Запишите погрешность как: 4,2 см ± 0,1 см. Вы также можете переписать это как 4,2 см ± 1 мм, так как 0,1 см = 1 мм.

Step 2 Всегда округляйте значения.

  • Если результат измерения 60 см, то и погрешность следует округлять до целого числа. Например, погрешность этого измерения может быть 60 см ± 2 см, но не 60 см ± 2,2 см.
  • Если результат измерения 3,4 см, то погрешность округляется до 0,1 см. Например, погрешность этого измерения может быть 3,4 см ± 0,7 см, но не 3,4 см ± 1 см.

Step 3 Найдите погрешность.

  • Изучите шар и линейку, чтобы получить представление о том, с какой точностью вы можете измерить диаметр. У стандартной линейки четко видна разметка по 0,5 см, но, возможно, вы сможете измерить диаметр с большей точностью, чем эта. Если вы думаете, что сможете измерить диаметр с точностью до 0,3 см, то погрешность в этом случае равна 0,3 см.
  • Измерим диаметр шара. Допустим, вы получили результат около 7,6 см. Просто укажите результат измерения вместе с погрешностью. Диаметр шара составляет 7,6 см ± 0,3 см.

Step 4 Рассчитайте погрешность измерения одного предмета из нескольких.

  • Допустим, что точность измерения стопки CD с помощью линейки 0,2 см. Итак, ваша погрешность ± 0,2 см.
  • Допустим, толщина всех CD равна 22 см.
  • Теперь разделим результат измерения и погрешность на 10 (число всех CD). 22 см/10 = 2,2 см и 0,2 см/10 = 0,02 см. Это означает, что толщина одного компакт-диска 2,20 см ± 0,02 см.

Step 5 Измерьте несколько раз.

Измерьте несколько раз. Для повышения точности измерений, будь то измерение длины или времени, замерьте искомую величину несколько раз. Вычисление среднего значения из полученных значений увеличит точность измерения и расчета погрешности.

Метод 2 из 3:

Вычисление погрешности множественных измерений

Step 1 Проведите несколько измерений.

  • Допустим, в результате пяти измерений получены результаты: 0,43 с, 0,52 с, 0,35 с, 0,29 с и 0,49 с .

Step 2 Найдите среднее арифметическое.

Найдите среднее арифметическое. Теперь найдите среднее арифметическое путем суммирования пяти различных результатов измерений и разделив результат на 5 (количество измерений). 0,43 + 0,52 + 0,35 + 0,29 + 0,49 = 2,08 с. 2,08 / 5 = 0,42 с. Среднее время 0,42 с.

Step 3 Найдите дисперсию полученных.

  • 0,43 с — 0,42 с = 0,01 с
    • 0,52 с — 0,42 с = 0,1 с
    • 0,35 с — 0,42 с = -0,07 с
    • 0,29 с — 0,42 с = -0,13 с
    • 0,49 с — 0,42 с = 0,07 с
    • Теперь сложите квадраты этих разниц: (0,01) 2 + (0,1) 2 + (-0,07) 2 + (-0,13) 2 + (0,07) 2 = 0,037 с.
    • Найти среднее арифметическое этой суммы можно, разделив ее на 5: 0,037 / 5 = 0,0074 с.

    Step 4 Найдите среднеквадратичное отклонение.

    Найдите среднеквадратичное отклонение. Чтобы найти среднеквадратичное отклонение, просто возьмите квадратный корень из среднего арифметического суммы квадратов. Квадратный корень из 0,0074 = 0,09 с, так что среднеквадратичное отклонение равно 0,09 с. [5] X Источник информации

    Step 5 Запишите окончательный ответ.

    Запишите окончательный ответ. Чтобы сделать это, запишите среднее значение всех измерений плюс-минус среднеквадратичное отклонение. Поскольку среднее значение всех измерений равно 0,42 с, а среднеквадратичное отклонение 0,09 с, то окончательный ответ 0,42 с ± 0,09 с.

    Метод 3 из 3:

    Арифметические действия с погрешностями

    Step 1 Сложение.

    • (5 см ± 0,2 см) + (3 см ± 0,1 см) =
    • (5 см + 3 см) ± (0,2 см + 0,1 см) =
    • 8 см ± 0,3 см

    Step 2 Вычитание.

    • (10 см ± 0,4 см) — (3 см ± 0,2 см) =
    • (10 см — 3 см) ± (0,4 см + 0,2 см) =
    • 7 см ± 0,6 см

    Step 3 Умножение.

    • (6 см ± 0,2 см) = (0,2 / 6) x 100 — добавив знак процента, получаем 3,3 %.
      Следовательно:
    • (6 см ± 0,2 см) х (4 см ± 0,3 см) = (6 см ± 3,3 % ) x (4 см ± 7,5 %)
    • (6 см x 4 см) ± (3,3 + 7,5) =
    • 24 см ± 10,8 % = 24 см ± 2,6 см

    Step 4 Деление.

    • (10 см ± 0,6 см) ÷ (5 см ± 0,2 см) = (10 см ± 6 %) ÷ (5 см ± 4 %)
    • (10 см ÷ 5 см) ± (6 % + 4 %) =
    • 2 см ± 10 % = 2 см ± 0,2 см

    Step 5 Возведение в степень.

    • (2,0 см ± 1,0 см) 3 =
    • (2,0 см) 3 ± (50 %) x 3 =
    • 8,0 см 3 ± 150 % или 8,0 см 3 ±12 см 3
    • Вы можете дать погрешность как для общего результата всех измерений, так и для каждого результата одного измерения в отдельности. Как правило, данные, полученные из нескольких измерений, менее достоверны, чем данные, полученные непосредственно из отдельных измерений.

    Предупреждения

    • Точные науки никогда не работают с «истинными» величинами. Хотя правильное измерение, скорее всего, даст величину в пределах погрешности, нет никакой гарантии, что это будет так. Научные измерения допускают возможность ошибок.
    • Погрешности, описанные здесь, применимы только для случаев нормального распределения (распределения Гаусса). Другие распределения вероятностей требуют других решений.

    Дополнительные статьи

    найти квадратный корень числа вручную

    найти квадратный корень числа вручную

    найти среднее значение, моду и медиану

    найти среднее значение, моду и медиану

    вычислить общее сопротивление цепи

    вычислить общее сопротивление цепи

    вычесть дробь из целого числа

    вычесть дробь из целого числа

    решать кубические уравнения

    решать кубические уравнения

    извлечь квадратный корень без калькулятора

    извлечь квадратный корень без калькулятора

    найти множество значений функции

    найти множество значений функции

    переводить из двоичной системы в десятичную

    переводить из двоичной системы в десятичную

    перевести миллилитры в граммы

    перевести миллилитры в граммы

    умножить в столбик

    умножить в столбик

    проводить действия с дробями

    проводить действия с дробями

    вычислить вероятность

    вычислить вероятность

    найти область определения и область значений функции

    найти область определения и область значений функции

    разделить целое число на десятичную дробь

    разделить целое число на десятичную дробь

    1. ↑http://www2.southeastern.edu/Academics/Faculty/rallain/plab194/error.html
    2. ↑http://www2.southeastern.edu/Academics/Faculty/rallain/plab194/error.html
    3. ↑http://www2.southeastern.edu/Academics/Faculty/rallain/plab194/error.html
    4. ↑http://www.mathsisfun.com/data/standard-deviation.html
    5. ↑http://www.mathsisfun.com/data/standard-deviation.html
    6. ↑http://web.uvic.ca/~jalexndr/192UncertRules.pdf
    7. ↑http://web.uvic.ca/~jalexndr/192UncertRules.pdf
    8. ↑http://web.uvic.ca/~jalexndr/192UncertRules.pdf
    9. ↑http://web.uvic.ca/~jalexndr/192UncertRules.pdf

    Об этой статье

    Преподаватель математики

    Соавтор(ы): Grace Imson, MA. Грейс Имсон — преподаватель математики с более чем 40 годами опыта. В настоящее время преподает математику в Городском колледже Сан-Франциско, ранее работала на кафедре математики в Сент-Луисском университете. Преподавала математику на уровне начальной, средней и старшей школы, а также колледжа. Имеет магистерскую степень по педагогике со специализацией на руководстве и контроле, полученную в Сент-Луисском университете. Количество просмотров этой статьи: 116 252.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *