Деление нуля на число
В данной статье мы с Вами изучим тему “Деление нуля на число”.
Давайте вообразим следующую ситуацию. У Вас есть 0 конфет — то есть ничего. И Вы хотите поделиться этими конфетами с мамой, папой, ребёнком, другом. Получилось у Вас? Конечно, нет. Потому что давать было нечего.
С числами — такая же история. Если Вы хотите 0 разделить на 4, частное будет равно 0.
При делении нуля на любое число, которое отличается от нуля, мы получаем ноль.
Рассмотрим это на других примерах.
Вспоминаем наши 0 конфет, которые необходимо разделить между 12-ю людьми. По сколько конфет получит каждый? Да тут и самому себе не достанется! Поэтому ответ — 0.
0 : 399 =
Как бы ни велик был делитель, если делимое — 0 — раздать нам всё равно нечего. Получаем:
Давайте решим уравнение:
х : 754 = 0
Чтобы найти неизвестное делимое, необходимо частное умножить на делитель.
Мы имеем 0 конфет и хотим увеличить это количество, умножив наше “ничего” на 754. Но ноль как был нулём, так им и останется — как ни умножай. Поэтому:
Подставляем найденное значение х в числовое выражение и выполняем проверку:
Решение соответствует изученному сегодня правилу — значит, посчитано верно.
Закрепите знания по теме “Деление нуля на число”. Решите примеры и уравнения:
0 : 22 = х : 84 =
0 : 58 = х : 90 =
0 : 137 = х : 305 =
0 : 203 = х : 549 =
0 : 771 = х : 862 =
Умножение и деление нуля на число ещё подробнее изучается на уроках в онлайн-школе математики World of Math. Занятия проводят квалифицированные педагоги, которые прошли трёхэтапный отбор в нашу команду. Их объединяет любовь к детям и математике. Их миссия — влюбить как можно большее количество ребят в предмет и учёбу в целом. А ещё — заметить уникальность, талант каждого юного ученика и помочь ему раскрыться. Ведь гармоничная личность успешна во всём — и это главное.
Записывайтесь на первый бесплатный урок здесь!
Почему нельзя делить на ноль?
Деление на ноль является математической операцией и не имеет никакого практического значения. Это связано с тем, что при делении нуля на любое число результат также будет равен нулю. Таким образом, если мы попытаемся разделить ноль на какое-либо число, то получим бесконечность или неопределенность.
Однако, в некоторых случаях деление на ноль может привести к ошибкам и непредсказуемым результатам. Например, если мы попытаемся умножить ноль на ноль, то получим бесконечность. Также деление на ноль может возникнуть при выполнении операций с плавающей точкой, когда результат зависит от точности вычислений.
Поэтому в математике и других точных науках деление на ноль запрещено и считается ошибкой.
Если 0 разделить на число что получится
Если нарушать общепринятые правила в мире науки, то можно получить самые непредвиденные результаты.
Еще со школьной скамьи учителя нам твердили, что в математике есть одно правило, которое нельзя нарушать. Звучит оно так: «На ноль делить нельзя!»
Почему же такое привычное для нас число 0, с которым мы так часто сталкиваемся в повседневной жизни, при проведении простой арифметической операции, как деление, вызывает столько трудностей?
Давайте разберемся в этом вопросе.
Если производить деление одного числа на все меньшие числа, то в результате мы будем получать все большие значения. Например
20:10=2
20:5=4
20:2=10
20:1=20
20:0,000001=20000000
. и так далее.
График функции y=1/x. Источник изображения dyrevelferd.info
Таким образом, получается, что если делить на число, стремящееся к нулю, то мы получим наибольший результат, стремящийся к бесконечности.
Значит ли это, что если мы разделим наше число на ноль, то получим бесконечность?
Это звучит логично, но все что нам известно — это только то, что если делить на число близкое по значению к нулю, то результат будет всего лишь стремиться к бесконечности и это не означает того, что при разделении на ноль мы в результате будем иметь бесконечность. Почему это так?
Для начала нам необходимо разобраться что из себя представляет арифметическая операция деления. Так, если мы 20 разделим на 10, то это будет означать то, сколько раз нам нужно будет сложить число 10 чтобы в результате получить 20 или то, какое число нам нужно два раза взять чтобы получилось 20.
В общем-то, деление представляет собой обратное арифметическое действие умножению. К примеру, умножая какое угодно число на Х, мы можем задать вопрос: «Существует ли число, которое нам нужно умножить на полученный результат, чтобы узнать исходное значение Х?» И если такое число есть, то оно и будет обратным значением для Х. Например, если мы умножим 2 на 5, то получим 10. Если после этого 10 мы умножим на одну пятую, то опять получим 2:
2*5=10
10*1/5=2
Таким образом, 1/5 — это число обратное 5, обратным числом для 10 будет 1/10.
Как вы уже заметили, в результате умножения какого-то числа на его обратное число ответом всегда будет единица. А в том случае, если вы захотите разделить какое-то число на ноль, то необходимо будет найти его обратное число, которое должно равняться единице деленной на ноль.
Это будет означать, при умножении на ноль должна получиться единица, а так как известно, что если умножить любое число на 0 получается 0, то это невозможно и у нуля не существует обратного числа.
Возможно ли что-то придумать, чтобы обойти это противоречие?
Ранее математики уже находили способы обходить математические правила, ведь в прошлом по математическим правилам было невозможно получать значение квадратного корня из отрицательного числа, тогда было предложено обозначать такие квадратные корни мнимыми числами. В результате появился новый раздел математики о комплексных числах.
Так почему бы нам также не попытаться ввести новое правило, согласно которому единица деленная на ноль обозначалась бы знаком бесконечности и проверить, что из этого получится?
Предположим, что нам ничего не известно о бесконечности. В таком случае, если исходить от обратного числа ноль, то умножая ноль на бесконечность, мы должны получить единицу. А если прибавить к этому еще одно значение нуля деленного на бесконечность, то должны в результате получится число два:
0*∞=1
0*∞+0*∞=2
В соответствии с распределительным законом математики левую часть уравнения можно представить в виде:
(0+0)*∞=2
а так как 0+0=0, то наше уравнение примет вид 0*∞=2, в связи с тем, что мы уже определили 0*∞=1 то получается, что 1=2.
Это звучит нелепо. Однако, такой ответ тоже нельзя признать совсем неверным, поскольку подобные вычисления попросту не действуют для обычных чисел. Например, в сфере Римана применяется деление на ноль, но уже совершенно иным способом, а это совсем другая история.
Короче говоря, привычным способом деление на ноль ничем хорошим не заканчивается, но тем не менее это не должно стать нам помехой для экспериментов в области математики, вдруг нам удастся открыть новые области для исследований.
Почему нельзя делить на ноль?
«Делить на ноль нельзя!» — большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.
Всё дело в том, что четыре действия арифметики — сложение, вычитание, умножение и деление — на самом деле неравноправны. Математики признают полноценными только два из них — сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.
Рассмотрим, например, вычитание. Что значит 5 – 3? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 – 3 означает такое число, которое при сложении с числом 3 даст число 5. То есть 5 – 3 — это просто сокращенная запись уравнения: x + 3 = 5. В этом уравнении нет никакого вычитания. Есть только задача — найти подходящее число.
Точно так же обстоит дело с умножением и делением. Запись 8 : 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8.
Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5 : 0 — это сокращение от 0 · x = 5. То есть это задание найти такое число, которое при умножении на 0 даст 5. Но мы знаем, что при умножении на 0 всегда получается 0. Это неотъемлемое свойство нуля, строго говоря, часть его определения.
Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5 : 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.
Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль? В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0, и тогда получаем 0 · 0 = 0. Выходит, 0 : 0=0? Но не будем спешить. Попробуем взять x = 1. Получим 0 · 1 = 0. Правильно? Значит, 0 : 0 = 1? Но ведь так можно взять любое число и получить 0 : 0 = 5, 0 : 0 = 317 и т. д.
Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0 : 0. А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)
Вот такая особенность есть у операции деления. А точнее — у операции умножения и связанного с ней числа ноль.
Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.