Сколько чисел от 1 до 1000
Перейти к содержимому

Сколько чисел от 1 до 1000

  • автор:

Сколько чисел от 1 до 1000

[<>:>] Присоединиться Не беспокоить 1 час

Пользователь приглашает вас присоединиться к открытой игре игре с друзьями .

Вход и регистрация

( 2 ) Используют 79 человек

Комментарии

Ни одного комментария.

Описание: Аналог словаря «Хотите быть рекордсменом», но до 1000. Один из немногих словарей, набираемых не глядя в монитор. Автор: vitaha Создан: 13 мая 2012 в 12:58 (текущая версия от 31 октября 2015 в 12:32) Публичный: Да Тип словаря: Тексты

Цельные тексты, разделяемые пустой строкой (единственный текст на словарь также допускается).

Содержание:

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000.

Сколько чисел от 1 до 1000 в записи которых нет чисел 2 и 3?

Между 1 и 1000, находится 500 чисел которые делятся на 2.
Осталось 500 из них на 5 делится ещё 100 чисел. Остаётся 400
На 3 делятся ещё 120 чисел.
Осталось 280.
Ещё 28 чисел которые делятся на 7.
252 числа, которые не делятся на 2,3,5,7

Никита КорсаковУченик (98) 3 года назад

Нужно кол-во чисел в записи которых нет ни цифры 2 ни цифры 3 (2,3 21,22,23. 31,32,33. 201,202. 301,302. )

Евгений ФёдоровГений (57854) 3 года назад
Остальные ответы
0-9: 8
10-99: 8*7
-> 100-999: (8 + 8*7) * 7
-> 0-999: (8 + 8*7) * 8 = 512
Евгений ФёдоровГений (57854) 3 года назад

Михаил Оракул (62821) Евгений Фёдоров, почему? можно даже проверить через комбинаторику: 8*8*8 (и да, я заметил, что по условию надо найти для 1-1000)

олeжgka НеймиксУченик (119) 3 года назад

https: Добрый вечер хочу сказать что если вы поможете этому человеку ответить на в? задания с дробями, я поставлю вам лайк. https: //otvet.mail.ru/question/222307333. И ответы ( 22 * 7/11 и 22× 4 /11).

Михаил Оракул (62821) олeжgka Неймикс, привет зачем мне лайки? их нельзя менять на деньги — они совершенно бесполезны а в той задаче надо составить и решить 2 простеньких системы: первая: х + 2у = 17 2х + у = 16 (где х и у — изначальное количество пирогов и пирожных) вторая: a + b = 22 4*a = 7*b (где a и b — цены пирога и пирожного) после чего, всё станет совершенно очевидно (да и кстати, эти ответы являются решением 2ой системы, но не являются ответами к задаче)

Решается так:
Сначала посчитаем от 0 и до 999.
В каждом из трёх разрядов цифр всего 10, но. 2 и 3 исключаем. Остается по 8 цифр. Следовательно, всего от 0 и до 999 будет 8*8*8=512. Теперь учтем, что нужно считать не от 0 до 999, а от 1 и до 1000. Для этого исключаем 0, но прибавляем 1000. Остается то же число 512.
Это и есть ответ! Совпадает с результатом Михаила.

Или посчитай на бумажке или напиши скрипт на компьютере.

Я правильно понял- ни 2-ки, ни 3-ки?
В указанном множестве присутствуют 1- ,2-х и 3-х значные числа плюс одно 4-х значное.
Среди 1 значных не имеют 2 и 3 в записи ровно 7 чисел.
Среди 2-х значных: 7*8=56
Среди 3-х значных: 7*8*8=448
Среди 4-х значных 1
Итого: 512

олeжgka НеймиксУченик (119) 3 года назад

Добрый вечер Никк, так как у меня не сильно получается писать формулы либо отвечать, так как мне написали на других страницах . Так если всё-таки посчитать решения по специальному методу то у вас получится 36 х 10 + 128;
Одним словом 360 + 128. Также, вот, если заметите! Так если ты эту сумму умножить на 10, а затем прибавить число 32 на 32 = 2 ^ десятой или 1024 . В общей сумме получится примерно 6,000. Выучи если решишь или захочешь этот метод . Это всё всем пока.

Сколько чисел от 1 до 1000

Из набора чисел 1, 2, 3, . 1000 выбрали ровно 501 число. Может ли оказаться так, что среди выбранных нет пары, в которой одно делится на другое?

те все числа попарно взаимно просты?
501 число не делится. Задача решена.
нет. нельзя. 500 можно, а 501 уже нет
(1) нет
(2) не решена
(4) не уверен, что 500 можно
(0) А 99 / 3 можно?
(6) 99 на 3 делится
(3) не выбирать 1 не предлагать?
(4) а не, уверен, что 500 можно
Простых чисел от 2 до 1000 = 337

(3) В тексте задачи написано что выбрали число 501.. Так как второго числа не выбрали, то и делить не на что.

(10) и что? они не обязательно должны быть простыми, даже не обязательно попарно взаимно простыми
(11) в тексте написано, что выбрали не одно число, а пятьсот одно
(13) Выбрали ровно пятьсот первое число. Пятьсот первое число, это 501.

(13) Если в списке есть X, то не должно быть 2*X
Разобъем все числа на пары X и 2*X, из каждой пары мы можем взять только одно число. Так что не больше 500 пар.

В (15) 1<=X<=500

(15) хм, а число 2 должно попасть в пару (1,2) или в пару (2,4)?
и в какую пару должно попасть число 999?

Глупость я написал, сейчас еще подумаю.

Берем все простые числа из диапазона.
Вопрос можно ли убрать одно простое и добавить 2 непростых чтоб выполнялось условие?
Что-то мне кажется что нет

(5) 500 — 999 -> ни одно не делится на другое
(20) да понял я в (9)
(19) можно, так как простых там сильно меньше половины
(22) например?
(23) а не, вру конечно, нельзя
но никто не сказал, что выберут именно все простые
(24) ну так тем более

(25) что тем более?
среди чисел от 1 до 10 всего 4 простых и пятого не добавить
но запросто можно взять другие 5 чисел, а вот 6 нельзя

(0) Не может.
500 — это ровно половина.
Т.е. 1 не может , потому что каждое 1-е число будет делиться на 1.
2 не может потому что каждое 2-е будет делиться на 2.
3 не может потому что каждое 3-е будет делиться на 3.
4 не может потому что каждое 4-е будет делиться на 4.
и т.д. до 500.
остаются только начиная с 501-го, а значит выбрать можно только 499. Что противоречит условию задания.

если в выбранных числах есть число <=500, то как минимум не должно быть одного числа >500
(28) ну неправда, может быть любое простое в интервале от 501 до 1000

(27) можно 500 выбрать, гарантированно
«3 не может потому что каждое 3-е будет делиться на 3 » и что?

(30) и тогда оно войдет в пару. каждому 3ему числу в твоем списке более 500. или в каждое из 1000 /3 = 333 чисел. А тогда у тебя уже останется только 667 чисел для выбора.

500 можно. Потому что в 501 — 1000 (500 чисел), и они друг на друга не делятся. Одна спускаясь ниже получаем пары сразу 500 = 1000 / 2, 499 = 998 /2 и т.д.
Если выбрано 501 число — тогда не может выполниться условие, что там не будет такой пары, где одно число кратно другому.

(31) не, непонятно про доказательство

Нетривиальный набор из 500 чисел:
334,335. 667 — итого подряд 334 числа
669,671. 999 — итого 166 нечетных чисел

Хм. А вот и доказательство.
Пусть у нас есть набор из 501 чисел.
Допустим в этом наборе есть два, но тогда в нем не может быть 501 числа, так как нечетных чисел больших двух всего 499. То есть числа два в наборе нет.

То есть у нас есть набор из 501 числа, в котором нет двух, и любое число из набора не делится на другое.
Тогда если мы любое число из набора меньшее либо равное 500 умножим на два, то набор не перестанет удовлетворять условию (0)

Берем по очереди все числа из набора меньшее либо равное 500 и умножаем на два до тех пор пока оно не войдет в интерал 502..1000 (а любое число меньшее либо равное пятисот умножением на два можно привести к этому интервалу)

В итоге мы получили 501 разное число в интервале 501..1000
Чего не может быть, в этом интервале всего 500 чисел.

(34) > Тогда если мы любое число из набора меньшее либо равное 500 умножим на два, то набор не перестанет удовлетворять условию (0)
вот это утверждение неверное, хотя на доказательство с некоторой поправкой это не повлияет.

Например у тебя в наборе есть числа 4 и 6. Умножив 6 на 2, получишь 12, что делится на 4, т.е нарушится условие из (0)

сколько цифр 9 встречается от 1 до 1000?

вчера кто то задал ьакой вопрос вот сижу второй день думаю, у меня получается 300,а у вас?

Дополнен 17 лет назад

9 19 29 39 49 59 69 79 89 90 91 92 93 94 95 96 97 98 99 — эти числа будут повторятся в сотнях от 100 до 800 следовательно : 20+20(первая сотня)+20(вторая сотня)+20(300)+20(400)+20(500)+20(600)+20(700)+20(800)=180,дальше:
900 901 902 903 904 905 906 907 908 909(цифр 9 встречается 11 раз)-это будет встречатся 9 раз так как 921,922,и так далее по десяткам,дальше я получаю : 11*9=99чисел и осталось: 990 991 992 993. 999-21 цифру в итоге:180+99+21=300!вот

Лучший ответ

ты абсолютно права. молодец! а ещё могу сказать,что в числах от 1 до 1000 2893 цифры..))

Источник: мозги задымились считавши..))

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *