Упражнения. Система линейных уравнений с 4-мя неизвестными.
Эти упражнения позволят проверить, как вы умеете решать системы линейных уравнений с 4-мя неизвестными.
Решение задач и упражнений лучший способ проверить свои знания и закрепить пройденный материал!
Упражнение. Решите систему линейных уравнений:
x 1 = x 2 = x 3 = x 4 =
Для перехода к следующему заданию нажмите кнопку «Следующий пример».
Внимание. При переходе к новому заданию этот пример станет недоступным.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Присоединяйтесь
© 2011-2024 Довжик Михаил
Копирование материалов запрещено.
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Если Вы хотите связаться со мной, имеете вопросы, предложения или хотите помочь развивать сайт OnlineMSchool пишите мне support@onlinemschool.com
Уравнения с четырьмя и более неизвестными
68. Уравнения с четырьмя и более неизвестными . Теперь ясны следующие соображения: одно уравнение с четырьмя неизвестными имеет бесконечно много решений, причем можно давать произвольные значения трем неизвестным, два уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать двум неизвестным, три уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать одному неизвестному, четыре уравнения с 4 неизвестными имеют лишь одно решение (конечно, если ни одно из этих уравнений не есть следствие остальных и не противоречит остальным).
Такие соображения можно продолжить и дальше. Например, 5 уравнений с 8-ю неизвестными имеют бесконечно много решений, причем произвольные значения можно давать трем неизвестным и т. п.
Решать системы уравнений с большим числом неизвестных приходится редко. Следует при этом решении пользоваться по возможности всеми особенностями уравнений, чтобы упростить решение.
Рассмотрим 2 примера. Пример 1:
x + y + 2z – t = 9
x + y – 2z + t = 7
x – y + z + 2t = –9
x – y – z – 2t = 5
Сложив 1-е и 2-е уравнения по частям, мы получим очень простое уравнение только с двумя неизвестными, а именно
2x + 2y = 16 или x + y = 8.
Сложив по частям 3-е и 4-е уравнения, получим:
2x – 2y = –4 или x – y = –2.
Теперь легко решить 2 полученных уравнения (x + y = 8 и x – y = –2), и тогда найдем x = 3 и y = 5.
Подставляя эти значения в 1-е и в 3-е уравнения, получим:
3 + 5 + 2z – t = 9 или 2z – t = 1
3 – 5 + z + 2t = –9 или z + 2t = –7
Подстановка этих значений во 2-е и 4-е уравнения приведет к таким же точно уравнениям.
Теперь остается решить 2 уравнения с 2 неизвестными:
Системы линейных уравнений
Линейные уравнения (уравнения первой степени) с двумя неизвестными
Определение 1 . Линейным уравнением (уравнением первой степени) с двумя неизвестными x и y называют уравнение, имеющее вид
ax +by = c , | (1) |
где a , b , c – заданные числа.
Определение 2 . Решением уравнения (1) называют пару чисел (x ; y) , для которых формула (1) является верным равенством.
Пример 1 . Найти решение уравнения
2x +3y = 10 | (2) |
Решение . Выразим из равенства (2) переменную y через переменную x :
Из формулы (3) следует, что решениями уравнения (2) служат все пары чисел вида
где x – любое число.
Замечание . Как видно из решения примера 1, уравнение (2) имеет бесконечно много решений. Однако важно отметить, что не любая пара чисел (x ; y) является решением этого уравнения. Для того, чтобы получить какое-нибудь решение уравнения (2), число x можно взять любым, а число y после этого вычислить по формуле (3).
Системы из двух линейных уравнений с двумя неизвестными
Определение 3 . Системой из двух линейных уравнений с двумя неизвестными x и y называют систему уравнений, имеющую вид
Определение 4 . В системе уравнений (4) числа a1 , b1 , a2 , b2 называют коэффициентами при неизвестных , а числа c1 , c2 – свободными членами .
Определение 5 . Решением системы уравнений (4) называют пару чисел (x ; y) , являющуюся решением как одного, так и другого уравнения системы (4).
Определение 6 . Две системы уравнений называют равносильными (эквивалентными) , если все решения первой системы уравнений являются решениями второй системы, и все решения второй системы являются решениями первой системы.
Равносильность систем уравнений обозначают, используя символ «»
Системы линейных уравнений решают с помощью метода последовательного исключения неизвестных , который мы проиллюстрируем на примерах.
Пример 2 . Решить систему уравнений
Решение . Для того, чтобы решить систему (5) исключим из второго уравнения системы неизвестное х .
С этой целью сначала преобразуем систему (5) к виду, в котором коэффициенты при неизвестном x в первом и втором уравнениях системы станут одинаковыми.
Если первое уравнение системы (5) умножить на коэффициент, стоящий при x во втором уравнении (число 7 ), а второе уравнение умножить на коэффициент, стоящий при x в первом уравнении (число 2 ), то система (5) примет вид
Теперь совершим над системой (6) следующие преобразования:
- первое уравнение системы оставим без изменений;
- из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.
В результате система (6) преобразуется в равносильную ей систему
Из второго уравнения находим y = 3 , и, подставив это значение в первое уравнение, получаем
Пример 3 . Найти все значения параметра p , при которых система уравнений
а) имеет единственное решение;
б) имеет бесконечно много решений;
в) не имеет решений.
Решение . Выражая x через y из второго уравнения системы (7) и подставляя полученное выражение вместо x в первое уравнение системы (7), получим
Следовательно, система (7) равносильна системе
Исследуем решения системы (8) в зависимости от значений параметра p . Для этого сначала рассмотрим первое уравнение системы (8):
y (2 – p) (2 + p) = 2 + p | (9) |
Если , то уравнение (9) имеет единственное решение
Следовательно, система (8) равносильна системе
Таким образом, в случае, когда , система (7) имеет единственное решение
Если p = – 2 , то уравнение (9) принимает вид
и его решением является любое число . Поэтому решением системы (7) служит бесконечное множество всех пар чисел
где y – любое число.
Если p = 2 , то уравнение (9) принимает вид
и решений не имеет, откуда вытекает, что и система (7) решений не имеет.
Системы из трех линейных уравнений с тремя неизвестными
Определение 7 . Системой из трех линейных уравнений с тремя неизвестными x , y и z называют систему уравнений, имеющую вид
Определение 9 . Решением системы уравнений (10) называют тройку чисел (x ; y ; z) , при подстановке которых в каждое из трех уравнений системы (10) получается верное равенство.
Пример 4 . Решить систему уравнений
Решение . Будем решать систему (11) при помощи метода последовательного исключения неизвестных .
Для этого сначала исключим из второго и третьего уравнений системы неизвестное y , совершив над системой (11) следующие преобразования:
- первое уравнение системы оставим без изменений;
- ко второму уравнению прибавим первое уравнение и заменим второе уравнение системы на полученную сумму;
- из третьего уравнения вычтем первое уравнение и заменим третье уравнение системы на полученную разность.
В результате система (11) преобразуется в равносильную ей систему
Теперь исключим из третьего уравнения системы неизвестное x , совершив над системой (12) следующие преобразования:
- первое и второе уравнения системы оставим без изменений;
- из третьего уравнения вычтем второе уравнение и заменим третье уравнение системы на полученную разность.
В результате система (12) преобразуется в равносильную ей систему
Из системы (13) последовательно находим
Пример 5 . Решить систему уравнений
Решение . Заметим, что из данной системы можно получить удобное следствие, сложив все три уравнения системы:
Если числа (x ; y ; z) являются решением системы (14), то они должны удовлетворять и уравнению (15). Однако в таком случае числа (x ; y ; z) должны также быть решением системы, которая получается, если из каждого уравнения системы (14) вычесть уравнение (15):
Поскольку мы использовали следствие из системы (14), не задумываясь о том, являются ли сделанные преобразования системы (14) равносильными, то полученный результат нужно проверить. Подставив тройку чисел (3 ; 0 ; –1) в исходную систему (14), убеждаемся, что числа (3 ; 0 ; –1) действительно являются ее решением.
Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы с нелинейными уравнениями» и нашим учебным пособием «Системы уравнений».
До ЕГЭ по математике осталось | |||
дней | часов | минут | секунд |
- Арифметика
- Алгебра
- Тригонометрия
- Планиметрия
- Стереометрия
- Элементы математического анализа
- Теория вероятностей и статистика
- Задачи на проценты
- Квадратный трехчлен
- Уравнения и неравенства
с модулями - Арифметическая и геометрическая прогрессии
- Метод координат
на плоскости - Фигуры на координатной плоскости, заданные неравенствами
- Решение алгебраических уравнений
- Решение рациональных неравенств
- Решение иррациональных неравенств
- Решение показательных уравнений
- Решение показательных неравенств
- Решение логарифмических уравнений
- Решение логарифмических неравенств
- Системы уравнений
- Решение тригонометрических уравнений
- Тригонометрия в ЕГЭ
по математике - Степень с рациональным показателем
- английский язык
- биология
- география
- информатика
- испанский язык
- история
- литература
- математика
- немецкий язык
- обществознание
- русский язык
- физика
- французский язык
- химия
- английский язык
- биология
- география
- информатика
- испанский язык
- история
- итоговое сочинение (изложение)
- литература
- математика
- немецкий язык
- обществознание
- русский язык
- физика
- французский язык
- химия
Решить систему из 4-х уравнений с 4-мя неизвестными онлайн
Воспользовавшись этим онлайн калькулятором, вы легко найдёте решение системы линейных уравнений. Вы можете вводите не только 4 уравнения, но и меньше. Калькулятор всё равно посчитает быстро и правильно.
Решить систему из 4-х уравнений с 4-мя неизвестными онлайн обновлено: 23 сентября, 2021 автором: Научные Статьи.Ру
Помощь в написании работы
Научные Статьи.Ру / Калькуляторы / СЛАУ / Решить систему из 4-х уравнений с 4-мя неизвестными онлайн
Калькулятор
Инструкция
Примечание: π записывается как pi ; корень квадратный как sqrt() .
Шаг 1. Заполните все необходимые поля коэффициентами при неизвестных.
Шаг 2. Нажмите кнопку “Решить систему”.
Шаг 3. Получите развёрнутый результат.
Числа можно вводить в виде целых чисел, десятичных или дробей (1/2).
Что такое линейная система уравнений
Как правило, если в линейной системе 4 уравнения, её решают методом Гаусса. Это классический метод решения систем линейных уравнений. В основе системы лежат элементарные преобразования – сложение, вычитание, умножение на коэффициенты. Суть данного метода – последовательное исключение неизвестных.
Решить систему из 4-х уравнений с 4-мя неизвестными онлайн обновлено: 23 сентября, 2021 автором: Научные Статьи.Ру
Средняя оценка 5 / 5. Количество оценок: 1
Поставьте вашу оценку
Сожалеем, что вы поставили низкую оценку!
Позвольте нам стать лучше!
Расскажите, как нам стать лучше?