Два иррациональных числа сумма которых рациональное число
Перейти к содержимому

Два иррациональных числа сумма которых рациональное число

  • автор:

Иррациональные числа — определение и вычисление с примерами решения

Иррациональные числа - определение и вычисление с примерами решения

Практическая работа 1. Великий греческий математик, физик, астроном и изобретатель Архимед хотел найти рациональное число, квадрат которого равен 3. С этой целью он выбрал числа

Классификация чисел

Иррациональные числа - определение и вычисление с примерами решения

Любое рациональное число можно записать в виде дроби

Иррациональные числа - определение и вычисление с примерами решения

Каждую конечную десятичную дробь можно записать в виде бесконечной десятичной периодической дроби с цифрой 0 в периоде. Но есть такие числа, которые невозможно представить в виде десятичной периодической дроби. Бесконечная десятичная непериодическая дробь выражает число, которое не является рациональным. Такие числа называются иррациональными числами. Иррациональное число невозможно представить в виде Приведём примеры иррациональных чисел:

a) 0,1010010001. (количество нулей после каждой единицы увеличивается на один);

b) 0,123456789101112. (в дробной части записана последовательность натуральных чисел);

Иррациональные числа - определение и вычисление с примерами решения

c) = 3,14159265. (выражает отношение длины окружности к диаметру).

Если Иррациональные числа - определение и вычисление с примерами решенияне является точным квадратом какого-либо натурального числа, то Иррациональные числа - определение и вычисление с примерами решенияявляется иррациональным числом. Например, Иррациональные числа - определение и вычисление с примерами решенияиррациональные числа. Множество иррациональных чисел обозначается буквой I. Арифметические действия над иррациональными числами и их свойства аналогичны рациональным числам. Множество, состоящее из рациональных и иррациональных чисел, называется множеством действительных чисел, которое обозначается буквой R.

Иррациональные числа - определение и вычисление с примерами решения

Иррациональные числа - определение и вычисление с примерами решения

Практическая работа.

Иррациональные числа - определение и вычисление с примерами решения

1) Начертите квадрат со стороной равной единичному отрезку и проведите диагональ данного квадрата. На диагонали квадрата постройте новый квадрат. Убедитесь, что площадь полученного квадрата в два раза больше площади единичного квадрата. Покажите, что сторона полученного квадрата равна соответственно

Иррациональные числа - определение и вычисление с примерами решения

2) Повторите работу по алгоритму, представленному ниже. На координатной оси постройте квадрат, сторона которого равна единичному отрезку. Начертите окружность с центром в точке нуль, радиусом равным диагонали квадрата и отметьте точку пересечения с числовой осью. Объясните связь между соответствующим данной точке числом и длиной диагонали квадрата.

Иррациональные числа - определение и вычисление с примерами решения

Числовая ось, рациональные, иррациональные числа

Каждой точке на числовой оси соответствует единственное число (рациональное или иррациональное) и каждому числу, на числовой оси соответствует единственная точка. Опираясь на это числа можно сравнивать. Число, соответствующее точке, которая расположена правее, больше числа, соответствующему точке, расположенной левее.

Иррациональные числа - определение и вычисление с примерами решения

Практическая работа.

1) При помощи калькулятора вычислите значения Иррациональные числа - определение и вычисление с примерами решенияпри заданных значениях Иррациональные числа - определение и вычисление с примерами решенияОкруглите их до десятых и заполните таблицу.

Иррациональные числа - определение и вычисление с примерами решения

2) На координатной плоскости отметьте точки из таблицы, с соответствующими координатами, и соедините их плавной линией.

Иррациональные числа - определение и вычисление с примерами решения

3) Может ли принимать отрицательные значения?

4) Как изменяются соответствующие значения Иррациональные числа - определение и вычисление с примерами решенияпри увеличении значений Иррациональные числа - определение и вычисление с примерами решения

Функция y=x и её график

Иррациональные числа - определение и вычисление с примерами решения

Функция и её график

В таблице, которую вы заполнили, показаны некоторые значения аргументов Иррациональные числа - определение и вычисление с примерами решенияв 1-ой строке, соответствующие значению функции Иррациональные числа - определение и вычисление с примерами решениязаданной формулой, Иррациональные числа - определение и вычисление с примерами решения во 2-ой строке. Аргумент функции Иррациональные числа - определение и вычисление с примерами решения определен при всех неотрицательных значениях Иррациональные числа - определение и вычисление с примерами решенияФункция также припишет только положительные значения (т.к. не существует квадратного корня из отрицательного числа и арифметический корень припишет только положительные значения).

График функции Иррациональные числа - определение и вычисление с примерами решения похож на ветвь параболы. При Иррациональные числа - определение и вычисление с примерами решеният.е. начало координат принадлежит графику. При Иррациональные числа - определение и вычисление с примерами решеният.е. график расположен в I четверти. Большему значению Иррациональные числа - определение и вычисление с примерами решениясоответствует большее значение Иррациональные числа - определение и вычисление с примерами решения. Например, Иррациональные числа - определение и вычисление с примерами решенияи т.д.

Иррациональные числа - определение и вычисление с примерами решения

Приближенное значение квадратного корня

Практическая работа.

Какова наибольшая длина стороны квадрата, составленного из 14 одинаковых единичных квадратов? Как вы нашли результат? Между какими последовательными натуральными числами, являющимися точными квадратами, расположено число 14?

Иррациональные числа - определение и вычисление с примерами решения

Иррациональные числа - определение и вычисление с примерами решения

Приближённое значение квадратного корня можно найти при помощи калькулятора, но существуют и другие методы. Вычислить приближённое значение квадратного корня можно при помощи числовой оси и чисел, являющихся точными квадратами. Например, найдём при помощи данного метода,

Иррациональные числа - определение и вычисление с примерами решения

Число 14 расположено между числами 9 и 16. Квадратные корни этих чисел соответственно равны 3 и 4. Целая часть квадратного корня из 14 равна 3. Найдём приближённое значение дробной части:

Иррациональные числа - определение и вычисление с примерами решения

На числовой прямой от 14 до 9-ти 5 единиц, от 9-ти до 16 — 7 единиц.

Дробная часть числа Иррациональные числа - определение и вычисление с примерами решения Иррациональные числа - определение и вычисление с примерами решенияИррациональные числа - определение и вычисление с примерами решения

Иррациональные числа - определение и вычисление с примерами решения

Полученное приближённое значение

Иррациональные числа - определение и вычисление с примерами решения

Значение, найденное при помощи калькулятора

Квадратный корень из произведения и частного

Иррациональные числа - определение и вычисление с примерами решения

Исследование: Найдите значение выражений

Иррациональные числа - определение и вычисление с примерами решения

Верно ли равенство?

Проверьте, что соответствующее равенство верно для любых двух неотрицательных чисел.

Квадратный корень из произведения и частного

Иррациональные числа - определение и вычисление с примерами решения

При

Корень из произведения неотрицательных множителей равен произведению корней из этих же множителей. Это свойство верно и для более двух множителей

Иррациональные числа - определение и вычисление с примерами решения

Аналогичным образом можно показать, что при

Корень из дроби, числитель которой неотрицателен, а знаменатель положителен, равен корню из числителя, деленному на корень из знаменателя.

Пример:

Иррациональные числа - определение и вычисление с примерами решения

Иррациональные числа - определение и вычисление с примерами решенияпри перестановке левой и правой части равенства получим: Иррациональные числа - определение и вычисление с примерами решения

Пример:

Иррациональные числа - определение и вычисление с примерами решения

Квадратный корень степени

Из того, что арифметический квадратный корень не может принимать отрицательных значений, следует что равенство Иррациональные числа - определение и вычисление с примерами решенияне всегда верно. Оно верно только для Иррациональные числа - определение и вычисление с примерами решенияпри Иррациональные числа - определение и вычисление с примерами решенияверно равенство Иррациональные числа - определение и вычисление с примерами решенияНапример, Иррациональные числа - определение и вычисление с примерами решения

Действительно, при , Иррациональные числа - определение и вычисление с примерами решенияпо определению арифметического квадратного корня Иррациональные числа - определение и вычисление с примерами решенияимеем Иррациональные числа - определение и вычисление с примерами решения

Иррациональные числа - определение и вычисление с примерами решения

Таким образом,

Иррациональные числа - определение и вычисление с примерами решения

Приняв во внимание, что абсолютное значение числа всегда положительное или равно нулю) и объединив два равенства, приведённых выше получим следующее

Иррациональные числа - определение и вычисление с примерами решения

Для извлечения корня чётной степени подкоренное выражение надо записать в виде квадрата идентичного выражения, а затем применить тождество

Пример:

Иррациональные числа - определение и вычисление с примерами решения

Преобразование выражений, содержащих квадратные корни

Вынесение множителя из-под знака корни

Иррациональные числа - определение и вычисление с примерами решения

Пример 1. Сравним числа

Иррациональные числа - определение и вычисление с примерами решения

При решении мы заменили Такое преобразование называется вынесением множителя из-под знака корня.

Пример 2. Иррациональные числа - определение и вычисление с примерами решенияИррациональные числа - определение и вычисление с примерами решения

Внесение множителя под знак корня

Иррациональные числа - определение и вычисление с примерами решения

Пример 3. Сравним числа

Иррациональные числа - определение и вычисление с примерами решения

Заменим число 6 на

Иррациональные числа - определение и вычисление с примерами решенияМы заменили Иррациональные числа - определение и вычисление с примерами решенияТакое преобразование называется внесением множителя под знак корня.

Иррациональные числа - определение и вычисление с примерами решения

Иррациональные числа - определение и вычисление с примерами решения

Пример 4.

Иррациональные числа - определение и вычисление с примерами решения

Сложение и вычитание корней, имеющих одинаковое подкоренное выражение вида Иррациональные числа - определение и вычисление с примерами решениявыполняется также как сложение и вычитание выражений Иррациональные числа - определение и вычисление с примерами решенияЕсли Иррациональные числа - определение и вычисление с примерами решения

Иррациональные числа - определение и вычисление с примерами решения

называются подобными корнями.

Пример:

Иррациональные числа - определение и вычисление с примерами решения

Чему равна длина двух досок, если длина одной доски равна

Иррациональные числа - определение и вычисление с примерами решения

Пример:

Иррациональные числа - определение и вычисление с примерами решенияИррациональные числа - определение и вычисление с примерами решения

Пример:

Иррациональные числа - определение и вычисление с примерами решения

Пример:

Иррациональные числа - определение и вычисление с примерами решения

Сократите дробь.

Иррациональные числа - определение и вычисление с примерами решения

Освобождение знаменателя от иррациональности

Сумма, разность, произведение (кроме умножения на «0» ) и отношение рационального и иррационального чисел является иррациональным числом. А вот сумма, разность, произведение и отношение двух иррациональных чисел может быть рациональным числом.

Пример:

а) При Иррациональные числа - определение и вычисление с примерами решенияПри Иррациональные числа - определение и вычисление с примерами решениядля рациональных выражений Иррациональные числа - определение и вычисление с примерами решенияверно равенство Иррациональные числа - определение и вычисление с примерами решенияи Иррациональные числа - определение и вычисление с примерами решенияназываются сопраженными выражениями. Для избавления от иррациональности в знаменателе, надо числитель и знаменатель дроби умножить на выражение, сопраженное знаменателю.

Пример:

Иррациональные числа - определение и вычисление с примерами решения

Иррациональные числа - определение и вычисление с примерами решения

Определение вида треугольника по длинам его сторон

Пусть Иррациональные числа - определение и вычисление с примерами решениястороны треугольника и Иррациональные числа - определение и вычисление с примерами решения

Иррациональные числа - определение и вычисление с примерами решения Иррациональные числа - определение и вычисление с примерами решения— прямоугольный треугольник.

Иррациональные числа - определение и вычисление с примерами решения Иррациональные числа - определение и вычисление с примерами решения— остроугольный треугольник.

Иррациональные числа - определение и вычисление с примерами решения Иррациональные числа - определение и вычисление с примерами решения— тупоугольный треугольник.

Особые прямоугольные треугольники

Иррациональные числа - определение и вычисление с примерами решения

Теорема 1. В равнобедренном прямоугольном треугольнике гипотенузы больше любого из катетов в раза.

Иррациональные числа - определение и вычисление с примерами решения

Отношение сторон: 1 : 1 :

Иррациональные числа - определение и вычисление с примерами решения

Теорема 2. В прямоугольном треугольнике с острым углом Иррациональные числа - определение и вычисление с примерами решениягипотенуза в 2 раза больше меньшего катета. Больший катет длиннее меньшего в Иррациональные числа - определение и вычисление с примерами решенияраза.

Иррациональные числа - определение и вычисление с примерами решения

Отношение сторон: 1 : : 2

Иррациональные числа - определение и вычисление с примерами решения

  • Действительные числа
  • Решение уравнений высших степеней
  • Системы неравенств
  • Квадратные неравенства
  • Уравнения и неравенства содержащие знак модуля
  • Уравнение
  • Метод математической индукции
  • Система координат в пространстве

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Иррациональные числа: определение, примеры

Иррациональные числа известны людям с глубокой древности. Еще за несколько веков до нашей эры индийский математик Манава выяснил, что квадратные корни некоторых чисел (например, 2 ) невозможно выразить явно.

Данная статья является своего рода вводным уроком в тему «Иррациональные числа». Приведем определение и примеры иррациональных чисел с пояснением, а также выясним, как определить, является ли данное число иррациональным.

Иррациональные числа. Определение

Само название «иррациональные числа» как бы подсказывает нам определение. Иррациональное число — это действительное число, которое не является рациональным. Другими словами, такое число нельзя представить в виде дроби m n , где m — целое, а n — натуральное число.

Определение. Иррациональные числа

Иррациональные числа — это такие числа, которые в десятичной форме записи представляют собой бесконечные непериодические десятичные дроби.

Для обозначения множества иррациональных чисел используется символ

Рациональные числа: определения, примеры

Данная статья посвящена изучению темы «Рациональные числа». Ниже приведены определения рациональных чисел, даны примеры, рассказано о том, как определить, является ли число рациональным, или нет.

Рациональные числа. Определения

Прежде чем дать дефиницию рациональных чисел вспомним, какие еще есть множества чисел, и как они связаны между собой.

Натуральные числа, в совокупности с противоположными им и числом ноль образуют множество целых чисел. В свою очередь, совокупность целых дробных чисел образует множество рациональных чисел.

Определение 1. Рациональные числа

Рациональные числа — числа, которые можно представить в виде положительной обыкновенной дроби a b , отрицательной обыкновенной дроби — a b или числа ноль.

Таким образом, можно оставить ряд свойств рациональных чисел:

  1. Любое натуральное число является рациональным числом. Очевидно, каждое натуральное число n можно представить в виде дроби 1 n .
  2. Любое целое число, включая число 0 , является рациональным числом. Действительно, любое целое положительное и целое отрицательное число легко представляется в виде соответственно положительной или отрицательной обыкновенной дроби. Например, 15 = 15 1 , — 352 = — 352 1 .
  3. Любая положительная или отрицательная обыкновенная дробь a b является рациональным числом. Это следует напрямую из данного выше определения.
  4. Любое смешанное число является рациональным. Действительно, ведь смешанное число можно представить в виде обыкновенной неправильной дроби.
  5. Любую конечную или периодическую десятичную дробь можно представить в виде обыкновенной дроби. Поэтому, каждая периодическая или конечная десятичная дробь является рациональным числом.
  6. Бесконечные и непериодическое десятичные дроби не являются рациональными числами. Их невозможно представить в форме обыкновенных дробей.

Приведем примеры рациональных чисел. Числа 5 , 105 , 358 , 1100055 являются натуральными, положительными и целыми. Сдедовательно, это рациональные числа. Числа — 2 , — 358 , — 936 представляют собой целые отрицательные числа, и они также рациональны в соответствии с определением. Обыкновенные дроби 3 5 , 8 7 , — 35 8 также являются примерами рациональных чисел.

Приведенное выше определение рациональных чисел можно сформулировать более кратко. Еще раз ответим на вопрос, что такое рациональное число.

Определение 2. Рациональные числа

Рациональные числа — это такие числа, которые можно представить в виде дроби ± z n , где z — целое число, n — натуральное число.

Можно показать, что данное определение равносильно предыдущему определению рациональных чисел. Чтобы сделать это, вспомним, что черта дроби равносильна знаку деления. С учетом правил и свойств деления целых чисел, можно записать следующие справедливые неравенства:

0 n = 0 ÷ n = 0 ; — m n = ( — m ) ÷ n = — m n .

Таким образом, можно записать:

z n = z n , п р и z > 0 0 , п р и z = 0 — z n , п р и z < 0

Собственно, данная запись и является доказательством. Приведем примеры рациональных чисел, основываясь на втором определении. Рассмотрим числа — 3 , 0 , 5 , — 7 55 , 0 , 0125 и — 1 3 5 . Все эти числа являются рациональными, так как их можно записать в виде дроби с целым числителем и натуральным знаменателем: — 3 1 , 0 1 , — 7 55 , 125 10000 , 8 5 .

Приведем еще одну эквивалентную форму определения рациональных чисел.

Определение 3. Рациональные числа

Рациональное число — это такое число, которое можно записать в виде конечной или бесконечной периодической десятичной дроби.

Данное определение напрямую следует из самого первого определения этого пункта.

Подведем итог и сформулируем резюме по данному пункту:

  1. Положительные и отрицательные дробные и целые числа составляют множество рациональных чисел.
  2. Каждое рациональное число можно представить в виде обыкновенной дроби, числитель которой является целым числом, а знаменатель — натуральным числом.
  3. Каждое рациональное число можно также представить в виде десятичной дроби: конечной или бесконечной периодической.

Какое из чисел является рациональным?

Как мы уже выяснили, любое натуральное число, целое число, правильная и неправильная обыкновенная дробь, периодическая и конечная десятичная дробь являются рациональными числами. Вооружившись этими знаниями можно без труда определить, является ли какое-то число рациональным.

Однако на практике часто приходится иметь дело не с числами, а с числовыми выражениями, которые содержат корни, степени и логарифмы. В некоторых случаях ответ на вопрос «рационально ли число?» является далеко не очевидным. Рассмотрим методы ответа на этот вопрос.

Если число задано в виде выражения, содержащего только рациональные числа и арифметические действия между ними, то результат выражения — рациональное число.

Например, значение выражения 2 · 3 1 8 — 0 , 25 0 , ( 3 ) является рациональным числом и равно 18 .

Таким образом, упрощение сложного числового выражения позволяет определить, рационально ли заданное им число.

Теперь разберемся со знаком корня.

Оказывается, что число m n , заданное в видя корня степени n от числа m рационально лишь тогда, когда m является n -ой степенью какого-то натурального числа.

Обратимся к примеру. Число 2 не является рациональным. Тогда как 9 , 81 — рациональные числа. 9 и 81 — полные квадраты чисел 3 и 9 соответственно. Числа 199 , 28 , 15 1 не являются рациональными числами, так как числа под знаком корня не являются полными квадратами каких-либо натуральных чисел.

Теперь возьмем более сложный случай. Является ли рациональным число 243 5 ? Если возвести 3 в пятую степень, получается 243 , поэтому исходное выражение можно переписать так: 243 5 = 3 5 5 = 3 . Следовательно, данное число рационально. Теперь возьмем число 121 5 . Это число нерационально, так как не существует натурального числа, возведение которого в пятую степень даст 121 .

Для того, чтобы узнать, является ли логарифм какого-то числа a по основанию b рациональным числом необходимо применить метод от противного. К примеру, узнаем, рационально ли число log 2 5 . Предположим, что данное число рационально. Если это так, то его можно записать в виде обыкновенной дроби log 2 5 = m n .По свойствам логарифма и свойствам степени справедливы следующие равенства:

5 = 2 log 2 5 = 2 m n 5 n = 2 m

Очевидно, последнее равенство невозможно так как в левой и правой частях находятся соответственно нечетное и четное числа. Следовательно, сделанное предположение неверно, и число log 2 5 не является рациональным числом.

Стоит отметить, что при определении рациональности и иррациональности чисел не стоит принимать скоропостижных решений. Например, результат произведения иррациональных чисел не всегда является иррациональным числом. Наглядный пример: 2 · 2 = 2 .

Также существуют иррациональные числа, возведение которых в иррациональную степень дает рациональное число. В степени вида 2 log 2 3 основание и показатель степени являются иррациональными числами. Однако само число является рациональным: 2 log 2 3 = 3 .

Иррациональные числа в математике и их свойства с примерами решения и образцами выполнения

Людмила Фирмаль Людмила Фирмаль

На первый взгляд может показаться, что никаких других чисел, кроме рациональных, и быть не может. В действительности же это не так. Мы увидим, что, кроме рациональных чисел, существуют и другие.

Станем исходить из того, что нам известны лишь рациональные числа и никакие другие. Тогда действие возведения в квадрат иад этими числами окажется выполнимым всегда.

Иррациональные числа

Между тем действие извлечения квадратного корня выполнимо уже далеко не всегда.

Например, действие извлечения квадратного корня из двух окажется невыполнимым, так как во множестве рациональных чисел нет такого числа, квадрат которого был бы равен двум (см. стр. 244).

Таким образом, чтобы сделать возможным выполнение действия извлечения арифметического квадратного корня, во всех случаях снова требуется прибегнуть к дальнейшему расширению нашего понятия о числе.

Здесь мы снова видим, что для выполнения прямого действия (возведения в квадрат) не требовалось расширять рациональную числовую область, а для безотказного выполнения обратного действия (извлечения квадратного корня) такое расширение уже становится необходимым.

К расширению области рациональных чисел нас приводит и рассмотрение вопроса об отношении несоизмеримых отрезков (см. стр. 247).

Действительно, оставаясь в области рациональных чисел, мы не можем выразить точно отношение несоизмеримых отрезков, а следовательно, и длину отрезка, несоизмеримого с единицей длины (см. стр. 248).

Таким образом, к расширению рациональной числовой области приводят нас потребности не только алгебры, но и геометрии.

Существование на числовой оси точек, не являющихся рациональными

Было доказано, что диагональ и сторона квадрата несоизмеримы (см. стр. 246). Отсюда вытекает следующее: если длину стороны квадрата принять за единицу, то не будет существовать никакого рационального числа, которое выражало бы точно длину диагонали.

Пусть ABCD (рис. 66) есть квадрат, сторона которого принята за единицу длины.

Иррациональные числа

Отложим на числовой оси Иррациональные числа(рис. 67) отрезки ОМ и Иррациональные числаравные диагонали АС. Тогда точки М и Иррациональные числане будут рациональными («черными») точками числовой оси, а следовательно, будут точками, которые мы назвали образно «красными».

Но так как отрезков, несоизмеримых с единицей; длины, существует бесконечное множество то и точек на числовой оси, не являющихся рациональными, также существует бесконечное множество.

Выше мы назвали образно все рациональные точки числовой оси «черными», а все остальные «красными». Отсюда следует, что «черные» и «красные» точки заполняют собой всю числовую ось сплошь. Иначе говоря, на числовой оси, кроме рациональных («черных») и нерациональных («красных») точек, никаких других точек нет.

Иррациональные числа

В § 5, гл. XVII было доказано, что между двумя любыми различными рациональными («черными») точками существует бесконечное множество других рациональных («черных») точек. В связи с этим примем к сведению без доказательства следующее: на любом сколь угодно малом отрезке числовой, оси, где бы он ни был расположен, имеется бесконечное множество рациональных („черных») и бесконечное множество „красных» точек.

При этом оказывается, что бесконечное множество нерациональных (т. е. «красных») точек числовой оси существенно «богаче» множества ее рациональных (т. е. «черных») точек. Это же самое в точных терминах можно сформулировать так: множество нерациональных (т. е. «красных») точек числовой оси имеет мощность (см. §6 этой же главы) более высокую, чем мощность множества рациональных (т. е. «черных») точек.

Выражаясь образно, можно сказать, что числовая ось настолько сильно насыщена «красными» (т. е. нерациональными) точками, что вся она, по нашей условной терминологии, представлялась бы нам как бы сплошь красной.

Понятие об иррациональном числе

1. Мы убедились в том, что одних рациональных чисел недостаточно для потребностей алгебры и геометрии.

Мы видели, что нет такого рационального числа, которое равнялось бы точно Иррациональные числа. (Аналогично можно было бы убедиться, что нет таких рациональных чисел, которые равнялись бы точно, например, Иррациональные числаи многим другим квадратным корням.) Мы знаем еще и то, что существуют отрезки, точное отношение которых не выражается никаким рациональным числом (см. стр. 247). Мы также знаем, что на числовой оси существуют такие точки, точные расстояния которых от начальной точки числовой оси не выражаются никакими рациональными числами (см. стр. 254). Значит, для изображения этих величин необходимы какие-то новые числа.

Как же составить представление об этих новых числах.

Во-первых, заметим, что такими новыми числами никак не могут быть ни конечные десятичные дроби, ни бесконечные периодические десятичные дроби, так как те и другие являются числами рациональными (см. стр. 251).

Во-вторых, заметим, что никакая бесконечная непериодическая дробь не может изображать собой рациональное число, так как всякое рациональное число (как известно из арифметики), будучи изображенным в форме бесконечной дроби, дает дробь обязательно периодическую.

Чтобы составить себе представление об этих новых числах, рассмотрим еще раз вопрос об измерении отрезка, несоизмеримого с единицей длины, и вопрос о квадратном корне из двух.

Иррациональные числа

Пусть отрезки АВ и CD (рис. 68)

Первый шаг. Примем отрезок CD за единицу измерения и станем откладывать его последовательно на отрезке АВ. Пусть отрезок CD отложился раз и получился остаток MB, меньший CD. (На рис. 69 = 5.) Эту операцию назовем первым шагом.

Второй шаг. Разделим отрезок CD на десять равных частей и будем откладывать Иррациональные числачасть CD на остатке MB. Пусть Иррациональные числачасть CD отложилась на MB Иррациональные числараз (на рис. 70 Иррациональные числа= 6).

Иррациональные числа

Тогда обязательно получится второй остаток

Третий шаг. На втором остатке откладываем Иррациональные числачасть CD. Получим целое число Иррациональные числаи третий остаток Иррациональные числа

Иррациональные числа

Этот процесс мы продолжаем дальше, делая четвертый, пятый и дальнейшие шаги.

В силу несоизмеримости отрезков АВ и CD этот процесс теоретически никогда не кончится и длина АВ выразится бесконечной десятичной дробью. Эта бесконечная десятичная дробь не будет периодической, так как в таком случае отрезки АВ и CD оказались бы соизмеримыми, тогда как по условию они несоизмеримы.

Иррациональные числа

Вот эта бесконечная непериодическая десятичная дробь и будет примером нового числа, не являющегося рациональным и называемого иррациональным. Этим числом и будет выражаться длина отрезка АВ.

Определение:

Иррациональным числом называется бесконечная непериодическая десятичная (положительная или отрицательная) дробь.

Например, бесконечная непериодическая дробь

8,121121112…

есть вполне определенное иррациональное число.

Иррациональные числа

Ниже будет показано, что математическое выражение, например есть также определенное иррациональное число.

Мы уже умеем находить приближенные значения с любой сколь угодно высокой степенью точности, т. е. мы можем находить сколько угодно десятичных знаков, идущих после запятой в десятичной дроби, которая изображает приближенное значение .

При этом нам ясно, что процесс извлечения Иррациональные числаникогда не может закончиться. Если бы этот процесс мог закончиться, то Иррациональные числабыл бы равен некоторой дроби Иррациональные числа, что невозможно.

Нам также ясно, что в результате бесконечного процесса извлечения не может получиться периодическая бесконечная дробь. Если бы получилась периодическая бесконечная дробь, то это означало бы опять, что Иррациональные числаравен некоторой дроби Иррациональные числа, что невозможно. (Ведь периодическая бесконечная дробь есть число рациональное.)

Бесконечный ряд чисел

Иррациональные числа

представляет собой приближенные значения Иррациональные числас недостатком, с точностью до Иррациональные числаи т. д.

Бесконечный же ряд чисел

Иррациональные числа

представляет собой приближенные значения Иррациональные числас избытком, с точностью до Иррациональные числаи т. д.

Квадратами чисел ряда (а) будут

Иррациональные числа

Иррациональные числа

Квадратами чисел ряда () будут

Иррациональные числа

Иррациональные числа

Числа, записанные в рядах (b) и , становятся тем ближе к числу 2, чем больше десятичных знаков мы берем.

Ряд (а) обладает той особенностью, что раз полученный десятичный знак навсегда сохраняется при продолжении процесса.

Иррациональные числа

Это, естественно, приводит к мысли принять за бесконечную десятичную дробь

Иррациональные числа

Но эта бесконечная дробь не может оказаться периодической, как это уже было доказано выше.

Иррациональные числа

Итак, квадратный корень из двух изображается бесконечной непериодической десятичной дробью. Следовательно, есть число иррациональное.

Написать бесконечную непериодическую десятичную дробь, разумеется, нельзя. Мы, однако, считаем ее определенной, если имеется то или иное правило, позволяющее написать любой его десятичный знак, как бы далеко ни стоял этот знак в последовательности десятичных знаков.

Например, тысячный знак в бесконечной десятичной дроби

Иррациональные числа

Иррациональные числа

изображающей иррациональное число имеет вполне определенную величину, несмотря на то, что его едва ли кто знает. Впрочем, при помощи современных электронных цифровых вычислительных машин найти этот тысячный знак можно довольно быстро.

Аналогично тому, как мы доказали, что Иррациональные числаесть число иррациональное, можно доказать, что числа Иррациональные числаи т. д. также являются иррациональными.

Чтобы показать существование других иррациональных чисел, введем понятие арифметического корня n-й степени.

Определение:

Арифметическим корнем n-й степени из положительного числа а называется такое новое положительное число, п-я степень которого равна а.

Корень n-й степени из а обозначается символом

Иррациональные числа

Число а называется подкоренным выражением; число n называется показателем корня; символ Иррациональные числаназывается знаком корня n-й степени, а выражение Иррациональные числаназывается корнем n -й степепи.

Примеры:

Иррациональные числа

Иррациональные числа

Корни 3-й степени называют кубическими корнями. Например, суть кубические корни.

Примем к сведению без доказательства, что, например,

Иррациональные числа

и им подобные представляют собой числа иррациональные.

Но ошибочно было бы думать, что иррациональные числа порождаются только корнями. Наоборот, существует много других источников, порождающих иррациональные числа. Например, мы видели, что длина всякого отрезка, несоизмеримого с единицей длины, есть число иррациональное, независимо от того, может или не может эта длина выражаться точно с помощью одного или нескольких корней.

Доказано, что отношение длины окружности к своему диаметру есть число иррациональное. Доказано, кроме того, что это иррациональное число не может быть точно представлено с помощью одного или нескольких корней.

Иррациональные числа

Отношение длины окружности к своему диаметру принято обозначать греческой буквой («пи»).

Иррациональные числа

Иррациональность числа впервые была доказана немецким математиком Ламбертом в 1766 году.

Иррациональные числа

Число изображается бесконечной непериодической дробью

Иррациональные числа

первые 15 десятичных знаков которой здесь выписаны.

Иррациональные числа

Число изображается бесконечной непериодической дробью

Иррациональные числа

первые 7 десятичных знаков которой здесь выписаны.

Мы уже знаем, что любая бесконечная непериодическая десятичная дробь представляет собой число иррациональное.

Теперь может возникнуть вопрос о том, как же понимать смысл самой бесконечной непериодической десятичной дроби.

Возьмем какую-нибудь бесконечную непериодическую десятичную дробь, например 4,25 225 2225… Составим две последовательности чисел.

Первая последовательность: 4,2; 4,25; 4,252; 4,2522; 4,25225…

Вторая последовательность: 4,3; 4,26; 4,253; 4,2523, 4,25226…

Доказано (доказательства мы здесь не приводим), что этими двумя бесконечными последовательностями определяется единственное число, которое больше каждого числа первой последовательности и меньше каждого числа второй последовательности. Это единственное число мы и понимаем под символом

Иррациональные числа

Таким образом, конкретное представление об иррациональном числе

Иррациональные числа

мы можем себе составить путем рассмотрения указанных выше двух бесконечных последовательностей. Эти две бесконечные последовательности дают возможность находить приближенные значения определяемого ими иррационального числа с любой точностью— с недостатком и с избытком. Например, число Иррациональные числаесть приближенное значение с недостатком с точностью до Иррациональные числа. Число же Иррациональные числаесть приближенное значение с избытком с точностью до Иррациональные числа.

Мы уже убедились в том, что всякая бесконечная десятичная непериодическая дробь является числом иррациональным. Однако существуют и другие бесконечные процессы, определяющие собой то или иное иррациональное число. Например, бесконечный процесс

Иррациональные числа

Иррациональные числа

определяет собой иррациональные числа , так что

Иррациональные числа

Пояснения к формуле

Иррациональные числа

Иррациональные числа

представляет собой некоторый, идущий по определенному закону, бесконечный процесс. Если допустить, что этот бесконечный процесс определяет собой некоторое число то получим

Иррациональные числа

Перепишем эту формулу в следующем виде:

Иррациональные числа

Выражение в предыдущей формуле, отмеченное одной фигурной скобкой, представляет тот же самый бесконечный процесс, которым (как мы допустили) определяется число х. Поэтому получим, что

Иррациональные числа

Из этого уравнения следует, что

Иррациональные числа

Но так как х — число положительное, то

Иррациональные числа

Итак, доказано следующее. Если допустить, что бесконечным процессом

Иррациональные числа

Иррациональные числа

определяется некоторое число, то этим числом будет как раз иррациональное число .

Иррациональные числа

Примем к сведению без доказательства, что, беря все большее и большее число звеньев этого бесконечного процесса, мы можем получать рациональные приближения иррационального числа все с большей и большей точностью.

Например, значение выражения

Иррациональные числа

равно Иррациональные числа. Отсюда Иррациональные числа

Иррациональные числа

что как раз и представляет приближенное значение с недостатком с точностью до 0,0001.

Сравнение иррациональных чисел

Два иррациональных числа называются равными, если их изображения с помощью бесконечных непериодических десятичных дробей одинаковы (тождественны).

Из двух положительных иррациональных чисел больше то, у которого целая часть больше. Если же целые части равны, то большим будет то, у которого больше первый десятичный знак после запятой. Если же и первые десятичные знаки одинаковы, то большим будет то, у которого больше второй десятичный знак и т. д.

Например, сравним следующие иррациональные числа:

Иррациональные числа

Здесь одинаковы целые части; первые семь десятичных знаков во втором числе такие же, как и в первом. Восьмой десятичный знак первого числа больше восьмого десятичного знака второго числа. Поэтому первое иррациональное число больше второго. Выписав достаточное число десятичных знаков бесконечных непериодических десятичных дробей изображающих иррациональные числа Иррациональные числаи Иррациональные числа, убедитесь, что Иррациональные числа

Сложение и умножение иррациональных чисел

Поясним, что такое сумма двух иррациональных чисел. Пусть иррациональное число а изображается следующей бесконечной непериодической десятичной дробью

Иррациональные числа

а иррациональное число b — дробью

Иррациональные числа

Тогда сумма а + b изобразится дробью

Иррациональные числа

Эта дробь бесконечная, непериодическая, десятичная; значит, она изображает собой определенное иррациональное число.

Напишем последовательности чисел, изображающих приближенные значения числа а:

с недостатком: Иррациональные числа
с избытком: Иррациональные числа

Сделаем то же самое и для числа b:

Иррациональные числа

Составим еще две следующие последовательности:

Иррациональные числа

В последовательности (I) идут суммы соответствующих приближенных значений чисел a и b с недостатком, ав(II)с избытком.

Под суммой а + b подразумевается такое число, которое больше каждого члена бесконечной последовательности (I) и меньше каждого члена бесконечной последовательности (II).

Таким числом как раз будет дробь

Иррациональные числа

Определение:

Суммой двух положительных иррациональных чисел называется число, которое больше суммы любых их приближенных значений с недостатком, но меньше суммы любых их приближенных значений с избытком. Такое число, как это доказано в строгой теории иррациональных чисел, всегда существует и притом только одно.

Сумма двух иррациональных чисел, вообще говоря, будет числом иррациональным, но может оказаться и рациональным.

Например, числа Иррациональные числаи Иррациональные числаоба иррациональные, между тем как их сумма

Иррациональные числа

есть рациональное число 3.

Определение:

Произведением двух положительных иррациональных чисел называется число, которое больше произведений любых их приближенных значений с недостатком, но меньше произведений любых их приближенных значений с избытком.

Такое число также всегда существует и притом только одно.

Произведение двух иррациональных чисел, вообще говоря, будет числом иррациональным, но может оказаться и рациональным.

Например, произведение иррациональных чисел Иррациональные числаи Иррациональные числабудет иррациональным числом, равным Иррациональные числа

Произведение же иррациональных чисел Иррациональные числаи Иррациональные числабудет равно Иррациональные числа, т. е. рациональному числу 4.

По аналогии с приведенными рассуждениями читатель сможет сам составить определения сложения и умножения двух чисел для того случая, когда одно из них рациональное, а другое иррациональное.

Подобно этому определяется вычитание и деление иррациональных чисел.

Понятие действительного числа

Определение:

Все рациональные и иррациональные числа, как положительные, так и отрицательные, называются действительными, или вещественными, числами.

Примем к сведению без доказательства, что особенности нуля и единицы (см. стр. 41), а также переместительный и сочетательный законы сложения и переместительный сочетательный и распределительный законы умножения (см. стр. 32 и 39) остаются в силе для всех действительных чисел (рациональных и иррациональных).

Примеры для закрепления терминологии

  1. Число 2 есть действительное, рациональное, целое, натуральное.
  2. Число (— 2) есть действительное, рациональное, целое, отрицательное.
  3. Число Иррациональные числаесть действительное, рациональное, дробное, положительное.
  4. Число 2,333… есть действительное, рациональное, дробное, положительное (2,333… =Иррациональные числа).
  5. Число 2,1333… есть действительное, рациональное, дробное, положительное (2,1333… =Иррациональные числа).
  6. Число 2, 12 112 11112… есть действительное, иррациональное, положительное.
  7. Число Иррациональные числаесть действительное, иррациональное, положительное.
  8. Число (—Иррациональные числа) есть действительное, иррациональное, отрицательное.

Слово «рациональный» происходит от латинского слова «rationalis», что означает — «разумный», «обоснованный».

Слово «иррациональный» происходит также от латинского слова «irratlonalis», что означает — «неразумный», «необоснованный».

Можно было бы подумать, что числа, несоизмеримые с единицей, были названы «иррациональными» потому, что их действительно считали не поддающимися логическому пониманию. На самом деле это не так. Еще у древнегреческого математика Евклида встречаются такие определения, из которых видно, что он отнюдь не считал «иррациональные числа» «неразумными», «нелогичными».

Иррациональные числа

Термин «иррациональное число» возник вследствие чисто формального перевода на латинский язык греческого слова « » . Употребляя это слово, греческие математики вовсе не хотели назвать новые числа «нелогичными», а хотели подчеркнуть лишь то, что каждое из них нельзя выразить отношениями двух целых чисел.

Строгая теория иррациональных чисел была построена впервые лишь во второй половине XIX века немецким математиком Дедекиндом. Со строгой теорией иррациональных чисел можно ознакомиться, например, по книге А. Н. Колмогорова и П. С. Александрова «Введение в теорию функций действительного переменного».

Примечание:

Примем к сведению без доказательства, что правила и формулы, выведенные для рациональных чисел, остаются в силе и для всех действительных чисел. Например, правила умножения и деления степеней, формулы умножения, свойства пропорций, свойство ряда равных отношений и т. д.

Некоторые понятия и предложения элементарной теории множеств

О бесконечных множествах

В математике постоянно приходится иметь дело с бесконечными множествами.

Приведем несколько примеров таких множеств:

1) множество всех натуральных чисел;
2) множество всех четных чисел;
3) множество всех простых чисел;
4) множество всех, рациональных чисел;
5) множество всех иррациональных чисел;
6) множество всех действительных чисел;
7) множество всех различных прямоугольных треугольников с гипотенузой, равной единице;
8) множество всех различных квадратных уравнений с действительными числовыми коэффициентами.

Введем понятие о взаимно однозначном соответствии.

Мы уже знаем, что каждому действительному числу соответствует определенная точка числовой оси и, наоборот, каждой точке числовой оси соответствует определенное действительное число. Имея это в виду, говорят, что между множеством действительных чисел и множеством точек числовой оси имеет место взаимно однозначное соответствие.

Приведем другой пример взаимно однозначного соответствия.

Между множеством всех целых положительных чисел и множеством целых отрицательных чисел можно установить взаимно однозначное соответствие. Например, каждому целому положительному числу можно поставить в соответствие число, ему противоположное.

Определение:

Если между элементами двух множеств можно установить взаимно однозначное соответствие, то такие два множества называются эквивалентными.

Пример:

Множество точек числовой оси и множество действительных чисел эквивалентны. Каждой точке числовой оси соответствует одно и только одно определенное действительное число и, наоборот, каждому действительному числу соответствует одна и только одна определенная точка числовой оси.

Пример:

Иррациональные числа

Множество точек отрезка АВ (рис. 71) и множество точек отрезка — эквивалентны.

Иррациональные числа

Каждой точке М отрезка А В можно поставить в соответствие одну и только одну точку Иррациональные числаотрезка Иррациональные числалежащую на луче ОМ. Наоборот, каждой точке Иррациональные числаотрезка Иррациональные числаможно поставить в соответствие одну и только одну точку К отрезка АВ, лежащую на луче ОК.

Пример:

Множество всех целых положительных чисел

Иррациональные числа

эквивалентно множеству всех положительных четных чисел

Иррациональные числа

В самом деле, мы можем поставить в соответствие каждому целому числу число, вдвое большее его. Наоборот, каждому четному числу мы можем поставить в соответствие число, вдвое меньшее его.

Взаимно однозначное соответствие между рассмотренными множествами (пример 3) мы можем записать в виде следующей таблицы:

Иррациональные числа

Относительно двух эквивалентных бесконечных множеств говорят также, что они имеют одинаковую мощность. Другими словами, два бесконечных множества имеют одинаковую мощность, если эти множества эквивалентны.

Счетные множества и множества мощности континуума

Множество, эквивалентное множеству всех целых положительных чисел, называется счетным множеством. Например, множество всех положительных четных чисел есть счетное множество. Множество всех положительных нечетных чисел также будет счетным, так как оно тоже эквивалентно множеству всех целых положительных чисел.

Так как всякое множество эквивалентно самому себе, то и множество целых положительных чисел также является счетным множеством.

Множество, эквивалентное множеству всех действительных чисел, называется множеством мощности континуума.

Множество точек числовой оси эквивалентно множеству действительных чисел. Поэтому множество точек числовой оси также имеет мощность континуума.

Приведем еще примеры множеств, имеющих мощность континуума.

Иррациональные числа

Пример:

Множество точек полуокружности имеет мощность континуума. В самом деле, легко убедиться в том, что множество точек полуокружности эквивалентно множеству точек числовой оси. Каждой точке Иррациональные числаполуокружности (рис. 72) можно поставить в соответствие одну и только одну точку М числовой оси, лежащую на луче Иррациональные числа. Наоборот, каждой точке К числовой оси можно поставить в соответствие одну и только одну точку Иррациональные числаполуокружности, лежащую на луче ОК.

Пример:

Множество точек любого отрезка прямой имеет мощность континуума.

Доказательство:

Множество точек отрезка прямой эквивалентно множеству точек полуокружности, построенной на этом отрезке как на диаметре.

В самом деле, каждой точке М отрезка АВ (рис. 73) можно поставить в соответствие одну и только одну определенную точку Иррациональные числаполуокружности, лежащую на перпендикуляре к прямой АВ, восставленном из точки М. Далее, каждой точке Иррациональные числаполуокружности можем поставить в соответствие одну и только одну точку К отрезка АВ, лежащую на перпендикуляре, опущенном из точки Иррациональные числана прямую АВ.

Но ранее было доказано, что множество точек полуокружности имеет мощность континуума. Следовательно, и мощность множества точек любого отрезка прямой также ийеет мощность континуума, что и требовалось доказать.

Так как всякое множество эквивалентно самому себе, то множество действительных чисел также имеет мощность континуума.

Примем к сведению без доказательства следующее.

  1. Множество рациональных чисел эквивалентно множеству натуральных чисел, т. е. есть счетное множество.
  2. Множество же одних иррациональных чисел не является счетным, а имеет такую же мощность, как и множество всех действительных чисел, т. е. мощность континуума.
  3. Из множества, имеющего мощность континуума, можно выделить сколько угодно бесконечных счетных множеств и прн этом оставшиеся элементы составят бесконечное множество опять же мощности континуума.
  4. Мощность счетного множества н мощность континуума — это различные мощности.
  5. Мощность счетного множества есть наименьшая мощность нз всех возможных мощностей бесконечных множеств.
  6. Мощность континуума есть более высокая мощность, чем мощность счетного множества.

С теорией множеств можно ознакомиться, например, по книге А. Н. Колмогорова и С. Ф. Фомина «Элементы теории функций и функционального анализа».

Дополнение к иррациональным числам

Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа Иррациональные числа

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Помощь студентам в учёбе lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal lfirmal

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *