Большая буква е в математике что это такое
Перейти к содержимому

Большая буква е в математике что это такое

  • автор:

Экспонента и число е: просто и понятно

Число e всегда волновало меня — не как буква, а как математическая константа. Что число е означает на самом деле?

Разные математические книги и даже моя горячо любимая Википедия описывает эту величественную константу совершенно бестолковым научным жаргоном:

Математическая константа е является основанием натурального логарифма.

Если заинтересуетесь, что такое натуральный логарифм, найдете такое определение:

Натуральный логарифм, ранее известный как гиперболический логарифм, является логарифмом с основанием е, где е – иррациональная константа, приблизительно равная 2.718281828459.

Определения, конечно, правильные. Но понять их крайне сложно. Конечно, Википедия в этом не виновата: обычно математические пояснения сухи и формальны, составляются по всей строгости науки. Из-за этого новичкам сложно осваивать предмет (а когда-то каждый был новичком).

С меня хватит! Сегодня я делюсь своими высокоинтеллектуальными соображениями о том, что такое число е, и чем оно так круто! Отложите свои толстые, наводящие страх математические книжки в сторону!

Число е – это не просто число

Описывать е как «константу, приблизительно равную 2,71828…» — это все равно, что называть число пи «иррациональным числом, приблизительно равным 3,1415…». Несомненно, так и есть, но суть по-прежнему ускользает от нас.

Число пи — это соотношение длины окружности к диаметру, одинаковое для всех окружностей. Это фундаментальная пропорция, свойственная всем окружностям, а следовательно, она участвует в вычислении длины окружности, площади, объема и площади поверхности для кругов, сфер, цилиндров и т.д. Пи показывает, что все окружности связаны, не говоря уже о тригонометрических функциях, выводимых из окружностей (синус, косинус, тангенс).

Число е является базовым соотношением роста для всех непрерывно растущих процессов. Число е позволяет взять простой темп прироста (где разница видна только в конце года) и вычислить составляющие этого показателя, нормальный рост, при котором с каждой наносекундой (или даже быстрее) всё вырастает еще на немного.

Число е участвует как в системах с экспоненциальным, так и постоянным ростом: население, радиоактивный распад, подсчет процентов, и много-много других. Даже ступенчатые системы, которые не растут равномерно, можно аппроксимировать с помощью числа е.

Также, как любое число можно рассматривать в виде «масштабированной» версии 1 (базовой единицы), любую окружность можно рассматривать в виде «масштабированной» версии единичной окружности (с радиусом 1). И любой коэффициент роста может быть рассмотрен в виде «масштабированной» версии е («единичного» коэффициента роста).

Так что число е – это не случайное, взятое наугад число. Число е воплощает в себе идею, что все непрерывно растущие системы являются масштабированными версиями одного и того же показателя.

Понятие экспоненциального роста

Давайте начнем с рассмотрения базовой системы, которая удваивается за определенный период времени. Например:

  • Бактерии делятся и «удваиваются» в количестве каждые 24 часа
  • Мы получаем вдвое больше лапшинок, если разламываем их пополам
  • Ваши деньги каждый год увеличиваются вдвое, если вы получаете 100% прибыли (везунчик!)

И выглядит это примерно так:

Деление на два или удваивание – это очень простая прогрессия. Конечно, мы можем утроить или учетверить, но удваивание более удобно для пояснения.

Математически, если у нас есть х разделений, мы получаем в 2^x раз больше добра, чем было вначале. Если сделано только 1 разбиение, получаем в 2^1 раза больше. Если разбиений 4, у нас получится 2^4=16 частей. Общая формула выглядит так:

Другими словами, удвоение – это 100% рост. Мы можем переписать эту формулу так:

Это то же равенство, мы только разделили «2» на составные части, которыми в сущности и является это число: начальное значение (1) плюс 100%. Умно, да?

Конечно, мы можем подставить и любое другое число (50%, 25%, 200%) вместо 100% и получить формулу роста для этого нового коэффициента. Общая формула для х периодов временного ряда будет иметь вид:

Это просто означает, что мы используем норму возврата, (1 + прирост), «х» раз подряд.

Приглядимся поближе

Наша формула предполагает, что прирост происходит дискретными шагами. Наши бактерии ждут, ждут, а потом бац!, и в последнюю минуту они удваиваются в количестве. Наша прибыль по процентам от депозита магическим образом появляется ровно через 1 год. На основе формулы, написанной выше, прибыль растет ступенчато. Зеленые точки появляются внезапно.

Но мир не всегда таков. Если мы увеличим картинку, мы увидим, что наши друзья-бактерии делятся постоянно:

Зеленый малый не возникает из ничего: он медленно вырастает из синего родителя. После 1 периода времени (24 часа в нашем случае), зеленый друг уже полностью созрел. Повзрослев, он стает полноценным синим членом стада и может создавать новые зеленые клеточки сам.

Эта информация как-то изменит наше уравнение?

Не-а. В случае с бактериями, полусформированные зеленые клетки все же не могут ничего делать, пока не вырастут и совсем не отделятся от своих синих родителей. Так что уравнение справедливо.

Числа π и e

Все знают геометрический смысл числа π — это длина окружности с единичным диаметром:

А вот смысл другой важной константы, e, имеет свойство быстро забываться. То есть, не знаю, как вам, а мне каждый раз стоит усилий вспомнить, чем же так замечательно это число, равное 2,7182818284590. (значение я, однако, по памяти записал). Поэтому я решил написать заметку, чтобы больше из памяти не вылетало.

Число e по определению — предел функции y = (1 + 1 / x) x при x → ∞:

x y
1 (1 + 1 / 1) 1 = 2
2 (1 + 1 / 2) 2 = 2,25
3 (1 + 1 / 3) 3 = 2,3703703702.
10 (1 + 1 / 10) 10 = 2,5937424601.
100 (1 + 1 / 100) 100 = 2,7048138294.
1000 (1 + 1 / 1000) 1000 = 2,7169239322.
lim× → ∞ = 2,7182818284590.

Это определение, к сожалению, не наглядно. Непонятно, чем замечателен этот предел (несмотря на то, что он называется «вторым замечательным»). Подумаешь, взяли какую-то неуклюжую функцию, посчитали предел. У другой функции другой будет.

Но число e почему-то всплывает в целой куче самых разных ситуаций в математике.

Для меня главный смысл числа e раскрывается в поведении другой, куда более интересной функции, y = k x . Эта функция обладает уникальным свойством при k = e, которое можно показать графически так:

В точке 0 функция принимает значение e 0 = 1. Если провести касательную в точке x = 0, то она пройдёт к оси абсцисс под углом с тангенсом 1 (в жёлтом треугольнике отношение противолежащего катета 1 к прилежащему 1 равно 1). В точке 1 функция принимает значение e 1 = e . Если провести касательную в точке x = 1, то она пройдёт под углом с тангенсом e (в зелёном треугольнике отношение противолежащего катета e к прилежащему 1 равно e). В точке 2 значение e 2 функции снова совпадает с тангенсом угла наклона касательной к ней. Из-за этого, заодно, сами касательные пересекают ось абсцисс ровно в точках −1, 0, 1, 2 и т. д.

Среди всех функций y = k x (например, 2 x , 10 x , π x и т. д.), функция e x — единственная обладает такой красотой, что тангенс угла её наклона в каждой её точке совпадает со значением самой функции. Значит по определению значение этой функции в каждой точке совпадает со значением её производной в этой точке: (e x )´ = e x . Почему-то именно число e = 2,7182818284590. нужно возводить в разные степени, чтобы получилась такая картинка.

Именно в этом, на мой вкус, состоит его смысл.

Числа π и e входят в мою любимую формулу — формулу Эйлера, которая связывает 5 самых главных констант — ноль, единицу, мнимую единицу i и, собственно, числа π и е:

e iπ + 1 = 0

Почему число 2,7182818284590. в комплексной степени 3,1415926535. i вдруг равно минус единице? Ответ на этот вопрос выходит за рамки заметки и мог бы составить содержание небольшой книги, которая потребует некоторого начального понимания тригонометрии, пределов и рядов.

Меня всегда поражала красота этой формулы. Возможно, в математике есть и более удивительные факты, но для моего уровня (тройка в физико-математическом лицее и пятёрка за комплексный анализ в универе) это самое главное чудо.

Что значит число 4.47e+8 ?

Архимеда знаете? Так вот это его методика записи сколь угодно длинных чисел. Если вам напишут число 4.47e+8 в нормальной десятичной форме, то это будет слишком длинно.

15 апр 2012 в 11:00
15 апр 2012 в 11:34
4.47e+8 — 447000000 . 4.47e+8 -> 4.47 * 10 ^ 8
29 мая 2018 в 7:02

4 ответа 4

Сортировка: Сброс на вариант по умолчанию

Это число 447 000 000. Или 4.47 × 10 8 . Так удобнее писать на компьютере.

Отслеживать
3,709 6 6 золотых знаков 13 13 серебряных знаков 32 32 бронзовых знака
ответ дан 15 апр 2012 в 11:11
xEdelweiss xEdelweiss
9,114 18 18 серебряных знаков 31 31 бронзовый знак

Обычный снос разрядов в числе. Когда записывается 4,47 · 10^8, подразумевается снос плавающей запятой на 8 разрядов вперёд — в данном случае это будет число 447 с 6 нулями впереди, т.е. 447.000.000. В программировании могут использоваться E-значения, причём e нельзя писать само по себе, но E — можно (но не везде и не всегда, об этом будет отмечено ниже), т.к. предпоследнее может ошибочно принятым за число Эйлера. Если нужно записать огромное число сокращённо, может использоваться стиль 4,47·E8 (альтернативный вариант для производства и мелкошрифтной печати — 4,47×E8), чтобы число читалось более разгружено и разряды указывались более обособленно (между арифметическими знаками ставить пробелы нельзя — в противном случае, это математическое условие, а не число).

3,52E3 — это хорошо для записи без индексов, но читать разрядное смещение будет сложнее. 3,52 · 10^8 — условие, т.к. требует индекса и отсутствует мантисса (последнее существует только у оператора, а это — расширенный множитель). ‘ · 10’ — процесс стандартного (основного) операционного умножения, число после ^ — показатель сноса разрядов, поэтому его не нужно делать мелким, если необходимо писать документы в данной форме (соблюдая надстрочное положение), в некоторых случаях, желательно использовать масштаб в районе 100 — 120%, а не стандартные 58%. Используя мелкий масштаб для ключевых элементов условия, снижается визуальное качество цифровой информации — придётся всматриваться (может быть и не нужно, но факт остаётся фактом — «прятать» условия мелким шрифтом не нужно, можно было вообще «закопать» — сокращать масштаб отдельных элементов условия это неприемлемо, особенно на компьютере), чтобы заметить «сюрприз», а это очень вредно даже на бумажном ресурсе.

Если процесс умножения выполняет особые операции, то в таких случаях использование пробелов может быть избыточным, т.к. помимо умножения чисел, множитель может быть связывающим звеном для огромных и мелких чисел, химэлементов и т.д. и т.п., которые нельзя записать десятичной дробью обычных чисел или невозможно записать конечным результатом. Это может не касаться записи с ‘ · 10^y’, т.к. любое значение в выражении выполняет роль множителя, а ‘^y’ — степень, указываемая надстрочным способом, т.е. является числовым условием. Но, убрав пробелы вокруг множителя и записав иначе — будет ошибкой, т.к. оператор отсутствует. Сам отрывок записи ‘ · 10’ — множитель-оператор + число, а не первый + второй оператор. Здесь и есть основная причина того, почему с 10-кой так нельзя. Если после числового оператора нет особых значений, т.е. нечисловых, но системных, то данный вариант записи не может быть оправдан — если есть системное значение, то такое значение должно подходить под определённые задачи с числовым или практическим сокращением чисел (для определённых действий, например, 1,35f8, где f — какое-либо уравнение, созданное для практических специальных задач, которое выводит действительные числа в результате конкретных практических опытов, 8 — значение, которое подставлено как переменное к оператору f и совпадает с числами при последовательном изменении условий наиболее удобным образом, если эта задача архиважная, то такие данные значения могут быть использованы со знаком без пробелов). Кратко, для подобных арифметических операций, но с другими целями, также можно проделывать с плюсами, минусами и делителями, если в этом есть крайняя необходимость для создания новых или упрощения существующих способов записи данных с сохранением точности на практике и может являться применимым числовым условием для определённых арифметических целей.

Итог: официально утверждённую форму экспоненциальной записи рекомендуется писать с пробелом и масштабом надстрочного шрифта в 58% и смещением в 33% (если изменение масштаба и смещения разрешается другими сторонами уровень в 100 — 120%, то можно установить 100% — это самый оптимальный вариант записи надстрочных значений, оптимальное смещение — ≈ 50%). На компьютере можно использовать 3,74e+2, 4,58E-1, 6,73·E-5, E-11, если последние два формата поддерживаются, на форумах лучше отказаться от e-сокращений по известным причинам, а стиль 3,65·E-5 или 5,67E4 может быть полностью понятным, исключения могут составлять лишь официальные сегменты общественности — там только с ‘ · 10^x‘, причём вместо ^x — используется только надстрочная запись степени.

Короче говоря, E является суперсокращением для десятичного антилогарифма, который часто помечают, как antilog либо antilg. Например, 7,947antilg-4 будет равен тому же, что и 7,947E-4. На практике это гораздо практичнее и удобнее, чем тягать «десятку» с надстрочным знаком степени лишний раз. Это можно назвать «экспоненциальным» логарифмическим видом числа как альтернативный вариант менее удобному «экспоненциальному» классическому. Только вместо «antilg», используется «E» либо сразу идёт второе число с пропуском (если число положительное) либо без него (на десятисегментных научных калькуляторах, типа «Citizen CT-207T»).

Большая буква е в математике что это такое

Д. Пойа

Серьезный человек, изучающий математику, намеревающийся сделать математику делом своей жизни, должен учиться доказательным рассуждениям, это его профессия и отличительный признак его науки. Однако для действительного успеха он должен учиться и правдоподобным рассуждениям; это тот тип рассуждений, от которого будет зависеть его творческая работа [247, с. 11].

Число „е»

Число „е«

Полученное число 2,718. играющее в высшей математике огромную роль, — не меньшую, пожалуй, чем знаменитое число я, — имеет особое обозначе­ние: е. Это — число иррациональное: оно не может быть точно выражено конечным числом цифр 1 ), но вычисляется только приближенно, с любой степенью точности, с помощью следующего ряда:

Из приведенного выше примера с ростом капита­ла по сложным процентам легко видеть, что число е есть предел выражения

при беспредельном возрастании п.

По многим причинам, которых мы здесь изложить не можем, число е очень целесообразно принять за основание системы логарифмов. Такие таблицы («на­туральных логарифмов») существуют и находят себе широкое применение в науке и технике. Те логариф­мы-исполины из 48, из 61, из 102 и из 260 цифр, о ко­торых мы говорили ранее, имеют основанием именно число е.

Число е появляется нередко там, где его вовсе не ожидали. Поставим себе, например, такую задачу:

На какие части надо разбить данное число а, что­бы произведение всех частей было наибольшее?

Мы уже знаем, что наибольшее произведение при постоянной сумме дают числа тогда, когда они равны между собой. Ясно, что число а надо разбить на рав­ные части. Но на сколько именно равных частей? На две, на три, на десять? Приемами высшей математи­ки можно установить, что наибольшее произведение получается, когда части возможно ближе к числу е.

Например, 10 надо разбить на такое число равных частей, чтобы части были возможно ближе к 2,718. Для этого надо найти частное

Так как разделить на 3,678. равных частей нель­зя, то приходится выбрать делителем ближайшее це­лое число 4. Мы получим, следовательно, наибольшее

произведение частей 10, если эти части равны 10/4,

есть самое большое число, какое может получиться от перемножения одинаковых частей числа 10. Действительно, разделив 10 на 3 или на 5 paвных частей, мы получим меньшие произведения:

1 ) Кроме того, оно, как и число я, трансцендентно, т. е. не может получиться в результате решения какого бы то ни было алгебраического уравнения с целыми коэффициентами.

Число 20 надо для получения наибольшего произ­ведения его частей разбить на 7 одинаковых частей, потому что

Число 50 надо разбить на 18 частей, а 100 — на 37, потому что

Число е играет огромную роль в математике, фи­зике, астрономии и других науках. Вот некоторые во­просы, при математическом рассмотрении которых приходится пользоваться этим числом (список можно было бы увеличивать неограниченно):

Барометрическая формула (уменьшение давления с высотой),

Формула Эйлера 1).

Закон охлаждения тел,

Радиоактивный распад и возраст Земли,

Колебания маятника в воздухе,

Формула Циолковского для скорости ракеты 2 ),

Колебательные явления в радиоконтуре.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *