К сожалению, запрашиваемая страница не существует.
Ничего не найдено по данному адресу. Попробуйте воспользоваться поиском или ссылками ниже.
Вам также может понравиться
Хендай Портер 2 — предохранители и реле Hyundai Porter
Стабилизатор напряжения с чистым синусом или его альтернатива
Электрооборудование двигателя на МТЗ-1221 – Схема Рисунок 3.
Как определить напряжение ЛЭП? Большинство обывателей
Свежие записи
- Шевроле Лачетти хэтчбек — замена заднего левого тормозного цилиндра: инструкция и рекомендации
- «Как найти объем шара, описанного вокруг цилиндра: простой способ».
- Цилиндр в замке двери: что это такое и как работает
- Очки с цилиндрами: что это такое и как они учитываются в рецепте
- Площадь основания цилиндра с радиусом 2: формула и расчёт
- Правообладателям
- Политика конфиденциальности
© 2024 Элекстросеть Информация, опубликованная на сайте, носит исключительно ознакомительный характер
Конвертер величин
Параллельно-последовательное соединение девяти гальванических элементов; 1 — параллельное соединение нескольких групп последовательно соединенных элементов; 2 — группа элементов, соединенных последовательно
Этот калькулятор определяет теоретические емкость, заряд, энергию и длительность работы одной или нескольких одинаковых аккумуляторных батарей, соединенных последовательно или параллельно в блок батарей. Его можно применять как для аккумуляторов, так и для гальванических элементов или батарей.
Пример: рассчитать номинальную энергию и заряд в используемой в источнике бесперебойного питания (ИБП) батарее номинальным напряжением 12 В и номинальной емкостью 8 А·ч при разряде со скоросью 2C.
Входные данные
Одиночная батарея или элемент
Номинальное напряжение одной батареи
Vbat
Номинальная емкость одной батареи
Cbat
Относительная скорость разряда одной батареи
Crate C
или Ток разряда одной батареи
Ibat
Блок батарей
Количество батарей в группе с последовательным соединением
Ns
Количество соединенных параллельно групп с последовательным соединением
Np
Поделиться ссылкой на этот калькулятор, включая входные параметры
Выходные данные
Одиночная батарея или элемент
Номинальная энергия одной батареи
Ebat Вт·ч или Дж
Время работы до полного разряда
tbat
Заряд батареи
Qbat Кл
Блок батарей
Номинальная емкость блока батарей
Cbank А·ч
Номинальная энергия блока батарей
Ebank Вт·ч или Дж
Время работы до полного разряда
tbank
Заряд блока батарей
Qbank Кл
Напряжение блока батарей
Vbank В
Ток разряда блока
Ibank А
Для расчета введите значения номинального напряжения, номинальной емкости, относительной скорости разряда батареи (С-rate), количество соединенных последовательно и параллельно батарей (элементов) в блоке батарей (опционально), выберите единицы измерения и нажмите на кнопку Рассчитать. Результаты будут показаны для одиночной батареи (элемента) и для нескольких батарей (элементов) в блоке.
Прежде, чем описывать калькулятор, мы рассмотрим терминологию, относящуюся к химическим источникам тока. Это связано с непоследовательностью и противоречивостью терминологии в этой области.
Терминология
Одиночный элемент питания — электрохимический источник тока, состоящий из корпуса с электродами и активной массой. Элементы питания применяются для питания портативных устройств, например, электрических фонариков. Обычно элементы питания имеют напряжение 1–3 В, в зависимости от типа химической реакции в них. Примерами являются элементы питания (разговорное — батарейки) типов AAA, AA, C, D.
Батарея — группа соединенных последовательно или параллельно и расположенных в едином корпусе одиночных гальванических элементов, аккумуляторных элементов и иных электрохимических источников питания, предназначенных для питания различных устройств. Например, автомобильная аккумуляторная батарея напряжением 12 В и емкостью 45 А·ч, состоящая из шести аккумуляторных элементов напряжением 2 В и емкостью 45 А·ч.
Батарейка — разговорное название одиночных гальванических или аккумуляторных элементов, обычно небольшого размера, а также батарей из них, например, 9-вольтовая батарейка «Крона» (шесть последовательно соединенных гальванических элементов), пальчиковая батарейка (один гальванический элемент).
Блок (также группа или банк) батарей или элементов — несколько соединенных последовательно или параллельно электрохимических источников питания в виде батарей или отдельных элементов, не имеющих общего корпуса и используемых для аварийного электропитания различного оборудования. Примером блока батарей является блок из двух аккумуляторных батарей напряжением 12 В и емкостью 8 А·ч в блоке бесперебойного питания. Подробнее о параллельном и последовательном соединении элементов питания и батарей — в конце этой статьи.
Формулы и определения
Одиночная батарея (элемент)
Указанные ниже формулы определяют взаимоотношения между током, который батарея отдает в нагрузку, ее емкостью и относительной скоростью разряда:
Ibat — ток в амперах, отдаваемый в нагрузку одной батареей,
Cbat — номинальная емкость батареи в ампер-часах (означает произведение амперов на часы), которая обычно маркируется на батарее, и
Crate — относительная скорость разряда батареи, определяемая как разрядный ток, деленный на теоретический ток, которые батарея может отдавать в течение одного часа и при этом будет полностью израсходована ее емкость.
Время работы t и относительная скорость разряда батареи (C-rate) связаны обратной пропорциональной зависимостью:
Отметим, что это теоретическое время работы. В связи с разнообразными внешними факторами, реальное время работы будет примерно на 30% меньше рассчитанного по этой формуле. Следует также учесть, что допустимая глубина разряда батареи еще больше ограничивает время ее работы.
Номинальная запасаемая в батарее энергия в ватт-часах рассчитывается по формуле
Ebat — номинальная запасаемая в батарее энергия в ватт-часах,
Vbat — номинальное напряжение батареи в вольтах
Cbat — номинальная емкость батареи в ампер-часах (А·ч)
Энергия в джоулях (ватт-секундах, Вт-с) рассчитывается по формуле
Известно, что при силе тока в один ампер через поперечное сечение проводника в одну секунду проходит заряд в один кулон. Следовательно, заряд батареи определяется из выражения Q = I · t с учетом известной емкости батареи в ампер-часах, которая определяет ток, отдаваемый батареей в нагрузку в течение 3600 секунд:
Qbat — заряд батареи в кулонах (К) и
Cbat — номинальная емкость батареи в ампер-часах.
Блок батарей
Номинальное напряжение блока батарей в вольтах определяется по формуле
Vbat — номинальное напряжение батареи в вольтах,
Vbank — номинальное напряжение блока батарей в вольтах
Ns — количество батарей в одной из нескольких групп последовательно соединенных батарей
Емкость блока батарей в ампер-часах, Cbank определяется по формуле
Номинальная энергия в ватт-часах Ebank, хранящаяся в блоке батарей, определяется по формуле
Ebat — номинальная энергия одной батареи,
Ns — количество батарей в группе последовательно соединенных батарей и
Np — количество групп соединенных последовательно батарей, соединенных параллельно
Энергия в джоулях рассчитывается по формуле:
Здесь Ebank, Wh — номинальная энергия блока батарей в ватт-часах.
Заряд в кулонах блока батарей Qbank определяется как сумма зарядов всех батарей в блоке:
Ток разряда блока батарей Ibank рассчитывается по формуле:
Время работы блока батарей tbank определяется по формуле:
Щелочные элементы питания ААА и АА
Характеристики батарей
При выборе батареи учитываются следующие характеристики:
- Тип батареи (элемента)
- Тип химической реакции батареи (элемента)
- Напряжение
- Емкость
- Относительная скорость разряда
- Допустимая глубина разряда
- Зависимость емкости от относительной скорости разряда
- Удельная энергоемкость (на единицу веса)
- Энергоемкость (на единицу объема)
- Удельная мощность (на единицу веса)
- Диапазон рабочих температур
- Допустимая глубина разряда
- Размер и вес
- Цена
Ниже рассматриваются некоторые из этих характеристик.
Тип батареи
Существуют две основные категории элементов питания и батарей: первичные (одноразовые) и вторичные (аккумуляторы с возможностью перезарядки).
Первичные источники тока
Это химические источники тока без надежной возможности их перезарядки. После использования такие источники утилизируют. Примером первичных источников тока являются марганцево-цинковые с угольным стержнем (солевые) и щелочные элементы.
Зарядка литий-ионных батарей в интеллектуальном зарядном устройстве
Вторичные источники тока
Вторичные источники тока (элементы или батареи) — аккумуляторы, которые рассчитаны на большое количество перезарядок (до 1000 раз). В них энергия электрического тока превращается в химическую энергию, которая накапливается и в дальнейшем может быть снова преобразована в электрический ток. Самый известный и старый тип аккумуляторов — свинцовый или кислотный. Другими распространенными аккумуляторами являются никель-кадмиевые (NiCd), никель-металлгидридные (NiMH), литий-ионные (Li-Ion) и литий-полимерные (LiPo) аккумуляторы.
Удельная энергоемкость (на единицу веса) и плотность энергии на единицу объема
Удельная энергоемкость на единицу веса батареи измеряется в единицах энергии на единицу массы. В СИ она измеряется в джоулях на килограмм (Дж/кг). Для аккумуляторов обычно используются ватты на кг (Вт/кг). Плотность энергии на единицу объема — это количество энергии, запасенной в батарее на единицу ее объема. Измеряется в ватт-часах на литр (Вт-ч/л).
К сожалению, удельная энергоемкость батарей относительно невелика, если сравнивать ее с энергоемкостью бензина. В то же время, удельная энергоемкость недавно разработанных литий-ионных аккумуляторов в четыре раза выше свинцовых. Электромобили с такими аккумуляторами уже достаточно удобны для ежедневного использования. Литий-полимерные батареи имеют самую высокую удельную энергоемкость и поэтому широко используются на летательных аппаратах с дистанционным управлением (дронах).
Тип химической реакции батареи
Щелочные батареи
Несмотря на то, что щелочные элементы питания появились более 100 лет назад, это наиболее распространенный тип одноразовых портативных источников питания. Номинальное напряжение щелочного элемента составляет 1,5 В, а емкость щелочного элемента типа АА достигает 1800–2600 мА·ч. Если объединить несколько таких элементов в один корпус, можно получить батарею на 4,5 В (из трех элементов), 6 В (из четырех элементов) и 9 В (из шести элементов). Батареи на 9 В (типа «Крона» — по названию выпускаемых в СССР угольно-цинковых батарей), разработанные для первых транзисторных радиоприемников, теперь используются для переносных радиостанций, детекторов дыма и пультов дистанционного управления моделями. Их емкость очень мала, всего около 500 мА·ч. Удельная энергоемкость щелочных элементов 110–160 Вт-ч/кг.
Марганцево-цинковые батареи
Марганцево-цинковые (также угольно-цинковые или солевые) первичные элементы питания были изобретены в 1886 г. и все еще используются сегодня. Номинальное напряжение такого элемента — 1,5 В, емкость элемента типа АА — 400–1700 мА·ч. Марганцево-цинковые элементы и батареи выпускаются тех же типоразмеров, что и щелочные. Их удельная энергоемкость составляет 33–42 Вт-ч/кг, то есть примерно втрое ниже энергоемкости щелочных элементов питания. Из-за невысокой энергоемкости их используют только там, где не требуется отдавать в нагрузку большой ток или если устройства используются не часто, например, в пультах управления или часах.
Такие никель-кадмиевые батареи устанавливались в канадских геостационарных спутниках Anik A, запущенных в 1972–75 гг. и выведенных из эксплуатации через 10 лет после запуска.
Кислотные аккумуляторные батареи
Кислотные (или свинцовые) аккумуляторные батареи недороги, доступны и широко используются в автомобилях, другой технике, в источниках бесперебойного питания и другой аппаратуре. Напряжение на кислотном элементе – 2 В. В батарее обычно бывает 3, 6 или 12 элементов, что позволяет получить 6,12 и 24 В соответственно. Свинцовые аккумуляторы удобны в тех случаях, если их большой вес не имеет значения. Удельная энергоемкость свинцовых аккумуляторов 33–42 Вт-ч/кг.
Никель-кадмиевые аккумуляторные батареи
Никель-кадмиевые (NiCd) аккумуляторные батареи (вторичные) изобрели более 100 лет назад и только в конце 90-х гг. прошлого века вместо них начали широко применяться никель-металлгидридные и литий-ионные аккумуляторы. Напряжение никель-кадмиевого элемента 1,2 В, удельная энергоемкость 40–60 Вт-ч/кг.
Такие никель-кадмиевые батареи напряжением 1,2 В и емкостью 10 А·ч устанавливались на советской ракете-носителе «Энергия», используемой для запуска многоразового космического корабля «Буран» в 1988 г.
Никель-металлгидридные аккумуляторы
Никель-металлгидридные аккумуляторы (вторичные) были изобретены относительно недавно — в 1967 г. Их объемная энергоемкость намного выше намного выше, чем у никель-кадмиевых аккумуляторов, и приближается к энергоемкости литий-ионных аккумуляторов. Номинальное напряжение элемента — 1,2 В, удельная энергоемкость — 60–120 Вт-ч/кг. Удельная мощность NiMH аккумуляторов 250–1000 Вт/кг также намного выше, чем у никель-кадмиевых аккумуляторов (150 Вт/кг).
Литий-полимерные аккумуляторы
В литий-ионных полимерных (или литий-полимерных, LiPo) аккумуляторах используется желеобразный полимерный электролит. В связи с их высокой удельной энергоемкостью 100–265 Вт-ч/кг, они используются в тех случаях, когда малый вес является основным фактором. Сюда относятся мобильные телефоны, летательные аппараты с дистанционным управлением (дроны) и планшетные компьютеры. В связи с их высокой удельной энергоемкостью, LiPo аккумуляторы при перегреве и избыточном заряде подвержены тепловому разгону, который может привести к утечке электролита, взрыву и пожару. Также при эксплуатации необходимо учитывать, что эти батареи расширяются при хранении в полностью заряженном состоянии, что может привести к появлению трещин в корпусе устройства, в котором они установлены.
Интеллектуальные литий-ионные полимерные батареи для дронов Zerotech Dobby (слева) и DJY Mavic Pro (справа); литий-полимерные батареи расширяются при хранении, если полностью заряжены и поэтому их рекомендуется хранить разряженными до 40–65%, если их не собираются использовать в течение более 10 дней.
Литий-железо-фосфатные аккумуляторы
Литий-железо-фосфатные аккумуляторы (вторичные источники питания, LiFePO₄) — это литий-ионные аккумуляторы, в которых в качестве катода используется фосфат лития-железа LiFePO₄, а в качестве анода — графитовый электрод с металлической сеткой. Это относительно новая технология, разработанная в начале 2000-х гг., имеет ряд преимуществ и недостатков по сравнению с традиционными литий-ионными аккумуляторами. Напряжение на элементе составляет 3,2 В и, поскольку оно весьма высокое по сравнению с другими типами химических реакций литий-ионной технологии, для получения номинального напряжения 12,8 В нужно всего четыре элемента. В процессе разряда, напряжение на этих аккумуляторах весьма стабильно, что позволяет получать от батареи почти полную мощность в процессе ее разряда. Аккумуляторы LiFePO₄ имеют удельную энергоемкость 90–110 Вт-ч/кг. Литий-железо-фосфатные аккумуляторы используются в электрических велосипедах, электромобилях, фонарях на солнечных батареях, в электронных сигаретах и фонарях. Литий-железо-фосфатный аккумулятор типоразмера 14500 имеет те же геометрические размеры, что аккумулятор типа АА. Однако его напряжение 3,2 В.
Напряжение батареи
Напряжение батареи определяется типом химического процесса, используемого в элементах, а также количеством элементов, соединенных последовательно. Ниже в таблице показаны напряжения различных первичных и вторичных элементов.
NiCd, NiMH аккумуляторы | 1,2 V |
Щелочные гальванические элементы | 1,5 V |
Угольно-цинковые гальванические элементы | 1,5 V |
Кислотные аккумуляторы | 2 V |
Литиевые гальванические элементы, в зависимости от используемого химического процесса | 1,5–3 V |
Литий-ионные аккумуляторы, в зависимости от используемого химического процесса | 3–3,6 V |
Если батарея из гальванических элементов изготовлена из нескольких элементов, соединенных последовательно, ее напряжение может быть 4,5 В, 12 В, 24 В, 48 В и др.
Емкость батареи
Емкость батареи — это количество электричества (заряд), который батарея может использовать для создания электрического тока в нагрузке при номинальном напряжении на ней. Отметим, что емкость батареи и электрическая емкость — это разные физические величины. Емкость батарей можно измерить в единицах электрического заряда — кулонах (Кл), а емкость конденсатора в единицах электрической емкости — фарадах (1 Ф = 1 Кл/В). Однако на практике емкость батарей удобнее измерять в ампер-часах (А-ч или А·ч) или миллиампер-часах (мА-ч или мА·ч, 1 мА·ч = 1000 А·ч). Эта единица не учитывает напряжение на аккумуляторе или элементе питания, однако она удобна с учетом того, что элементы с одним типом химической реакции всегда имеют одно напряжение. Номинальная емкость батареи часто выражается в виде произведения 20 часов на величину тока, который свежезаряженная батарея способна отдавать в нагрузку в течение 20 часов при комнатной температуре. Реальная (не номинальная) емкость любой батареи зависит от нагрузки, то есть, от тока, который батарея отдает в нагрузку, или от относительной скорости ее разряда. Чем выше скорость разряда, тем ниже реальная емкость батареи.
Емкость батареи можно измерить также в единицах энергии — ватт-часах (Вт-ч или Вт·ч). Счетчик в вашей квартире измеряет израсходованную электроэнергию в киловатт-часах (кВт-ч), то есть почти в таких же единицах, только в тысячу раз больших. 1 кВт-ч = 1000 Вт-ч. Чтобы получить емкость батареи в единицах энергии нужно умножить емкость в ампер-часах на номинальное напряжение. Например, батарея 12 В 8 А·ч, которая часто используется в небольших источниках бесперебойного питания, может хранить 12 · 8 = 96 Вт-ч энергии.
В приведенной ниже таблице показана номинальная емкость гальванических элементов питания напряжением 1,5 В и аккумуляторов напряжением 1,2 В типа АА:
NiMH аккумуляторы | 600–3600 mAh |
NiCd аккумуляторы | 600–1000 mAh |
Щелочные элементы | 1800–2600 mAh |
Угольно-цинковые элементы | 400–1700 mAh |
Литиевые элементы | 1500–3000 mAh |
Относительная скорость разряда батареи
Относительная скорость разряда батареи (англ. С-rate, C-rating) определяется как ток разряда, деленный на теоретический ток, при котором в течение одного часа будет полностью израсходована номинальная емкость батареи. Это безразмерная величина, обозначаемая буквой C (от англ. charge — заряд). Например, батарея с номинальной емкостью Cbat = 8 А·ч, при разряде со скоростью 2C израсходует свою номинальную емкость для создания в нагрузке тока Ibat=16 A в течение 0,5 часа. Разряд 1С для той же батареи означает, что она израсходует свою номинальную емкость для создания в нагрузке тока Ibat = 8 A в течение одного часа. Отметим, что относительная скорость разряда является безразмерной величиной, несмотря на то, что Cbat выражается в ампер-часах, а Ibat — в амперах. Отметим также, что батарея отдаст в нагрузку меньше энергии при разряде с большей скоростью.
Глубина разряда батареи
Сохраняемая в батарее полная энергия часто не может быть использована полностью без повреждения батареи. Допустимая глубина разряда батареи (англ. DOD — depth of discharge) иногда указывается в ее технических характеристиках и определяет процент энергии, который может быть получен от батареи. Например, свинцовые кислотные аккумуляторы, предназначенные для запуска двигателя автомобиля, не рассчитаны на глубокий разряд большим стартерным током, который может легко их повредить. Тонкие пластины, установленные в таких аккумуляторах, позволяющие достичь высокой площади поверхности электродов, а, следовательно, максимального тока, могут быть легко повреждены при глубоком разряде, особенно если такой разряд большим стартерным током часто повторяется. Некоторые батареи по техническим условиям могут быть разряжены только на 30%. Это означает, что только 30% их емкости можно использовать для питания нагрузки.
Элементы, батареи и блоки батарей: 1 — блок последовательно соединенных элементов питания 1,5 В типа АА общим напряжением 3 В; 2 — элемент типа ААА напряжением 1,5 В; 3 — 9-вольтовая батарея типа «Крона» из шести 1,5-вольтовых последовательно соединенных элементов
В то же время, выпускаются свинцовые аккумуляторы с более толстыми пластинами, которые рассчитаны на регулярный заряд–разряд. Именно такие батареи используются в солнечных батареях и в электромобилях.
Последовательное и параллельное соединение элементов питания и батарей в блоки батарей
Блоки батарей используются, если необходимо соединить несколько батарей для одной цели. В результате соединения батарей в блок можно увеличить напряжение, отдаваемый в нагрузку ток или и то, и другое. Для соединения батарей в блок используют три метода соединения:
- Параллельное
- Последовательное
- Последовательное и параллельное
При объединении батарей в блок нужно учитывать несколько важных вещей. В блоке батарей нужно использовать не просто батареи одинаковой емкости и типа, но батареи, выпущенные одним изготовителем и взятые из одной партии. Конечно, нельзя соединять вместе батареи с разными типами химической реакции. Разные батареи, соединенные вместе, будут работать некоторое время, однако срок их службы резко сокращается. Если емкости батарей различны, одна батарея будет разряжаться быстрее, чем другая, что опять же приведет к сокращению срока их службы.
Последовательное соединение батарей в блок
При последовательном соединении батарей в блок общее напряжение является суммой напряжений отдельных батарей, а емкость в ампер-часах остается равной емкости одной батареи. Например, можно последовательно соединить две батареи напряжением 12 В и емкостью 10 А·ч. При этом общая емкость будет равна тем же 10 А·ч, однако напряжение удвоится и станет равно 24 В. При последовательном соединении, коротким толстым проводом-перемычкой соединяют отрицательный вывод первой батареи с положительным выводом второй батареи, отрицательный вывод второй батареи с положительным выводом третьей батареи и так далее. Затем крайние выводы блока (один — положительный, другой — отрицательный) присоединяются к нагрузке.
Параллельное соединение
При параллельном соединении батарей в блок, их напряжение остается равным напряжению одной батареи, а емкость и максимальный ток в нагрузке увеличиваются. Для подключения батарей параллельно, соедините толстыми проводами-перемычками все положительные выводы, а также все отрицательные выводы — положительный к положительному, отрицательный к отрицательному. Для выравнивания нагрузки, присоедините положительный вывод нагрузки к выводу блока батарей с одного конца, а отрицательный — к выводу блока батарей с другого конца. Например, можно таким образом параллельно соединить две 12-вольтовые батареи емкостью 10 А·ч. Полученный блок батарей будет иметь общую емкость 20 А·ч при напряжении 12 В.
В этом блоке батарей имеется две параллельных группы из трех батарей, соединенных последовательно
Если нужно увеличить сразу и емкость, и напряжение, можно использовать параллельно-последовательное соединение. Например, если имеется шесть идентичных батарей емкостью 10 А·ч и напряжением 12 В, можно соединить две группы по три батареи последовательно, а затем эти две группы соединить параллельно. Новый блок батарей будет иметь емкость 20 А·ч при напряжении 36 В.
Сделать 1,5 В из 5 В
Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.
Поделиться
Последние посетители 0 пользователей онлайн
- Ни одного зарегистрированного пользователя не просматривает данную страницу
Сообщения
Не болтайте чепухой! Ни в компараторе, ни в ОУ НЕТ никакой «внутренней цепи гистерезиса». Гистерезис задается исключительно ОБВЯЗКОЙ. Выход компаратора построен по схеме ОК, т.е., он может только ПРИНИМАТЬ ток, поступающий от шины питания через R5. Следовательно, транзистор открывается током, протекающим через R5, а закрывается закорачиванием его базы выходным транзистором компаратора на общую шину. Отсюда следует, что либо постановщик задания — тупарь, не имеющий никакого понятия об особенностях работы компаратора, либо применен не компаратор, а ОУ. В последнем случае R6действительно был бы нужен.
@Falconist , раз по заданию нужен — обосновать не проблема. И вообще-то про его «нужность» у меня написано. Для особо придирчивых могу обосновать так: R6 применён, чтобы обеспечить на выходе компаратора высокий уровень сигнала, а не ограничивать его напряжением база-эмиттер. Это нужно, чтобы правильно срабатывала имеющаяся внутренняя цепь гистерезиса в компараторе. Ей нужно, чтобы уровень выходного напряжения был достаточный. Иначе будет «звон» при переключении на пологих фронтах. Возражения есть?
Это делает R5. R6 нужен, как зайцу стоп-сигнал.
Коробки должны быть прозрачными, с крышками, и удобно складируемыми. Можно, конечно, круглые, но прямоугольные удобнее.
На самом деле — фигня вопрос. R1 — чтобы привязать потенциал входа ОУ к нулю. Определяет требуемое входное сопротивление этого детектора. Берём равным заданному входному сопротивлению, например 10 кОм. R2, R3 — резистивный делитель напряжения, устанавливает порог срабатывания вашего «детектора». Допустим, задан порог срабатывания 1,0 В. Выбираем ток этого делителя. Он должен быть минимум в 50 — 100 раз больше входного тока утечки компаратора, чтобы паразитный ненормированный входной ток не влиял на точность. Допустим, он по справочнику не более 1 мкА. Выбираем ток делителя в 1000 раз больше — 1 мА. Напряжение питания компаратора и этого делителя берём меньше напряжения питания, чтобы работал параметрический стабилизатор на вашем стабилитроне без позиционного обозначения. Выбор примерно 5 В — нормально. И для компаратора напряжение питания в допустимом диапазоне, и на регулировку достаточно остаётся. Итого, стабилитрон на (примерно, с допуском) 5,1 В. На выходе делителя напряжения (на входе компаратора) должно быть 1 В (это порог). Считаем номиналы резисторов: R3 = 1 В / 1 мА = 1 кОм. R2 = (5,1-1)В / 1 мА = 4,1 кОм. Выбираем ближайшие номиналы из ряда заданной точности. Например, из ряда Е96 с 1% точностью это будут номиналы 1,0 кОм и 4,12 кОм. Если нужна точность установки порога лучше, чем может обеспечить стабилитрон, напряжение порога можно подстроить изменяя в небольших пределах сопротивление одного из этих резисторов. Из справочника берём ток потребления компаратора. Например, он 5 мА. Выбираем номинал выходного резистора R7 таким, чтобы обеспечить выдачу 5 В на заданную нагрузку. Допустим, нагрузка 1 кОм. Тогда чтобы на ней напряжение могло быть 5 В, сопротивление R7 должно быть не более 100 Ом (5,1 В / (1+0,1)кОм * 1 кОм = 5,0 В). Ток через R7, когда на выходе 0, будет равен 5,1 В / 0,1 кОм = 51 мА (примерно, напряжение насыщения UБЭ транзистора не учитываем, хотя можно и учесть). Ток через R5 не должен превышать максимально-допустимый выходной ток компаратора (берётся из справочника). Выбираем этот ток вдвое меньше, равным 2 мА. Тогда R5 = (5,1 — UБЭ) / 2 мА = (5,1-0,7)/2 = 2,2 кОм. Итого, от источника будет потребляться ток 5 мА в компаратор, плюс 1 мА в делитель напряжения порога, плюс 51 мА через R7 или 2 мА через R5 плюс ток в стабилитрон. Током в базу транзистора пренебрегаем, хотя можно и учесть. Ток в стабилитрон должен компенсировать изменение тока потребления остальной части схемы, то есть 51 — 2 мА (бывает или один, или второй) = 49 мА. Ток в стабилитрон зададим равным 50 мА, с запасом в 1 мА, чтобы через стабилитрон всегда тёк какой-то ток. Итого, суммарный ток потребления будет постоянным и равным 5 + 1 + 51 + 1 = 58 мА или 5 + 1 + 2 + 50 = 58 мА. Отсюда требуемое сопротивление балластного резистора R4 равно (9 — 5,1)В / 58 мА = 67,2 Ом. Из того же ряда выбираем номинал 66,5 Ом (в сторону уменьшения, «лишний» ток заберёт стабилитрон). Остался резистор R6. В принципе, он в данной схеме действительно не очень нужен (если взять R5 номиналом побольше), но у нас он будет ограничивать ток в базу транзистора, чтобы он не уходил в глубокое насыщение и переключался побыстрее. Ток коллектора транзистора мы знаем — 51 мА. Коэффициент усиления транзистора по току берём из справочника. Берём минимальный, чтобы гарантированно открывался. Например, 100. Ток базы будет 51 мА / 100 = 510 мкА. Чтобы такой ток шёл с +5,1 В, суммарное сопротивление R6 и R5 должно равняться 5,1 В / 510 мкА = 10 кОм. Номинал R6 равен 10 кОм — 2,2 кОм = 7,8 кОм. Из ряда Е96 выбираем ближайший номинал 7,87 кОм. Всё.
Схему ищите в начале темы. Я не занимался изготовлением доктора (только софт), поэтому подсказать Вам в этом вопросе не могу.
Я бы, наверное, в этой ситуации подал на УНЧ сигнал с другого источника, с того же смартфона, и посмотрел, что покажет спектра. Может что-то не в порядке в настройках программы? Сама на себя звуковая карта нормальную картинку даёт?
Как получить напряжение 5 вольт из батареек
Если нужно для какой-нибудь электронной игрушки или измерительного прибора получить напряжение в несколько вольт (5-9), а под рукой только обычная пальчиковая батарейка, можно спаять за пол-часа такой несложный инвертор.
Схема и детали преобразователя
Все моточные данные и возможность замены радиоэлементов на другие – написано на схеме. Я использовал самый распространённый КТ315 транзистор, с другими типами возможно будет работать ещё лучше и КПД-шнее.
Вся схема залита уже термоклеем, но детальки можно разглядеть.
Общий провод припаян к корпусу, (жёлтый проводок). Плюсовой выход с преобразователя припаян к плюсовой клемме. Плюс питания на преобразователь подаётся на минусовую клемму. Схема работает от одной пальчиковой батарейки.
Ну и готовое устройство, для наглядности рядом сфотографирована пальчиковая батарейка. Как видим, ну ни чем не отличается от обычной батарейки АА.
На выходе получаем примерно 5 В без нагрузки. Как нагрузку подключал светодиод от фонарика, при подключений светодиода напряжение просело до 3 В (это не удивительно – он работает как стабилитрон). Ток примерно от 5…10 мА. Яркость в пределах нормы. Для небольшого фонарика с питанием от двух пальчиковых батареек будет вполне нормально, если одну батарейку заменить этим устройством. Да и мультиметру цифровому, где ток пару миллиампер, можно попробовать это задействовать. Сборка и испытание схемы – Cosmogor.
Способы соединения элементов питания в батареи
«Питайтесь» правильно!
При питании радиоаппаратуры от батареек и аккумуляторов полезно знать распространённые схемы соединения батарей и аккумуляторов. Дело в том, что каждый вид батареек имеет допустимый разрядный ток.
Разрядный ток – наиболее оптимальное значение тока, который потребляется от батареи. Если потреблять от батарейки ток, превышающий разрядный, то надолго этой батарейки не хватит, она не сможет полностью отдать свою расчётную мощность.
Наверное, замечали, что для электромеханических часов используются “ пальчиковые ” (формата АА) или “ мизинцевые ” (формата ААА) батарейки, а для переносного лампового фонаря батарейки побольше (формат R14 или R20), которые способны отдать значительный ток и имеют большую ёмкость. Размер батарейки имеет значение!
Иногда требуется обеспечить батарейное электропитание прибора, который потребляет значительный ток, но стандартные батареи (например R20, R14) не могут дать необходимый ток, он для них выше разрядного. Что делать в этом случае?
Необходимо взять несколько однотипных батареек и соединить их в батарею.
Параллельное соединение элементов питания.
Так, например, если необходимо обеспечить значительный ток для аппарата применяют параллельное соединение батареек. В таком случае общее напряжение составной батареи будет равно напряжению одного элемента питания, а разрядный ток будет во столько раз больше, сколько батареек применяется.
На рисунке составная батарея из трёх 1,5 вольтовых батареек G1, G2, G3. Если учесть, что среднее значение разрядного тока для 1 батарейки формата АА 7-7,5 mA (при сопротивлении нагрузки 200 Ом), то разрядный ток составной батареи составит 3 * 7,5 = 22,5 mA. Вот так, приходится брать количеством.
Читайте также: Как обозначается напряжение в электрической цепи
Последовательное соединение элементов питания.
Бывает, что необходимо обеспечит напряжение 4,5 – 6 вольт, применяя батарейки на 1,5 вольта. В таком случае нужно соединить батарейки последовательно, как на рисунке.
Разрядный ток такой составной батареи составит значение для одного элемента, а общее напряжение будет равно сумме напряжений трёх батареек. Для трёх элементов формата АА (“пальчиковых”) разрядный ток составит 7-7,5 mA (при сопротивлении нагрузки 200 Ом), а суммарное напряжение – 4,5 Вольт.
Итак, подведём итоги.
Если необходимо обеспечить значительный ток, то применяется параллельное соединение элементов питания. Рассчитать значения напряжения и разрядного тока для параллельно составленной батареи питания:
I=IG1 * N — общий разрядный ток параллельно составленной батареи.
где N – количество однотипных элементов питания.
IG1 – разрядный ток одного элемента питания.
U=UG1 — общее напряжение параллельно составленной батареи.
где UG1 – напряжение одного элемента питания.
Понятно, что никакого выигрыша по напряжению при параллельном соединении мы не получим.
Если требуется обеспечить напряжение в разы большее напряжения отдельного элемента питания, то применяется последовательная схема соединения.
Рассчитать значения напряжения и разрядного тока для последовательно составленной батареи питания:
U=UG1 * N — общее напряжение последовательно составленной батареи.
I=IG1 — общий ток последовательно составленной батареи.
В таком случае мы получаем выигрыш по напряжению.
А как быть, если необходимо получить выигрыш и по напряжению и по току? Тогда применяется смешанное соединение элементов питания.
Взгляните на рисунок, думаю, Вам всё станет понятно.
При таком соединении составная батарейка из 6 элементов типоразмера АА обеспечит напряжение 4,5 Вольт и разрядный ток на нагрузке в 200 Ом – 2 * 7,5 = 15mA.
Рассчитывается всё довольно просто. Сначала, вычисляем напряжение на 3 последовательно соединённых элементах одного из плеч. Ток последовательно соединённых элементов будет равен току одного элемента.
Далее складываем токи каждого плеча из трёх элементов. В данном случае у нас два плеча. Напряжение параллельно соединённых элементов равно напряжению одного элемента. Здесь 3 последовательно соединённых батарейки представляют как бы один элемент питания на 4,5 Вольт.
В радиолюбительской практике не всегда необходимо вычислять разрядный ток, так как потребляемый приборами ток, как правило, нестабилен, всё зависит от режима работы конкретного аппарата.
Понятно, что магнитола потребляет больший ток в режиме воспроизведения, нежели в режиме прослушивания радио. В режиме воспроизведения ток потребления возрастает из-за работы двигателя протяжки ленты, тогда как в режиме радио необходимо лишь усилить принятый сигнал.
Необходимо просто правильно оценивать токовую нагрузку на составную батарею, ведь некоторые приборы могут потреблять значительный ток и в таких случаях можно добавить пару дополнительных элементов питания. В таком случае автономное время работы Вашего прибора возрастёт.
Соединение элементов питания и батарей
Источники напряжения обычно называют источниками питания. Для увеличения тока или напряжения, а может и того и другого источники питания (элементы, батареи) могут соединяться вместе. Существует три типа соединения элементов питания:
1. Последовательное соединение элементов.
2. Параллельное соединение элементов.
3. Последовательно-параллельное (смешанное) соединение элементов.
Читайте также: Подключение прибора учета трехфазной электрической сети низкого напряжения
Последовательное соединение элементов.
При последовательном соединении элементов питания выделяются две схемы: последовательно-дополняющая и последовательно-препятствующая.
В последовательно-дополняющей схеме положительный вывод первого элемента питания соединяется с отрицательным выводом второго элемента питания; положительный вывод второго элемента питания соединяется с отрицательным выводом третьего элемента питания и т.д. (рисунок 3.11.)
Рисунок 3.11.Последовательное соединение элементов питания.
При таком соединении источников питания через все элементы будет течь одинаковый ток:
Индексы в обозначениях токов указывают на номера отдельных источников питания (элементов или батарей питания)
А полное напряжение при последовательном соединении равно сумме напряжений (ЭДС) отдельных элементов:
При последовательно-препятствующем включении источников питания, они соединяются друг с другом одноименными выводами. Но на практике такая схема не применяется или применяется, но очень редко.
Параллельное соединение элементов.
При параллельном соединении элементов питания, их одноименные выводы соединяются вместе, то есть плюс к плюсу, минус к минусу (рис 3.12).
Рисунок 3.11.Параллельное соединение элементов питания.
В этом случае общий ток будет равен сумме токов каждого элемента:
Общее напряжение при параллельном включении источников питания будет равно напряжению каждого отдельного источника.
Последовательно-параллельное соединение элементов напряжения.
Источники питания включают по последовательно-параллельной схеме для увеличения, как тока, так и напряжения. При этом основываются на том, что параллельное включение увеличивает силу тока, а последовательное увеличивает общее напряжение. На рисунке 3.13 показаны примеры последовательно-параллельных схем включения элементов питания.
Рисунок 3.11.Последовательно-параллельное соединение элементов питания.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Как получить нестандартное напряжение
Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?
Стандартное напряжение — это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда «заточены» различные потребители этого напряжения: лампочки, проигрыватели, усилители и тд.
Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания. Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:
Регулятор напряжения на LM317T
Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно здесь ). Еще читайте про lm317t.
Читайте также: Осветительный прибор номинальное напряжение
Интегральный стабилизатор и стабилитрон
На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!
Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ — это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:
Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 — 15 Вольт. Более подробно про стабилизаторы можно прочитать здесь.
U стабилитрона — это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт — уже нестандартный ряд напряжения ;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений ;-).
Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:
Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.
Теперь берем стабилитрон на Uстабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.
Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.
Интегральный стабилизатор и диод
Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода — 0,3-0,4 Вольта? Именно этим свойством диода и воспользуемся ;-).
Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.
Почти 5.7 Вольт ;-), что и требовалось доказать.
Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:
На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.
Вот такими простыми способами можно получить нестандартное напряжение.
-
- Напряжение
- Реле
- Трансформатор
- Что такое рекуперация на электровозе
- Чем отличается электровоз от тепловоза
- Чем глушитель отличается от резонатора
- Стойки стабилизатора как определить неисправность
- Стабилизатор поперечной устойчивости как работает
Способы соединения элементов питания в батареи
Батареи и аккумуляторы
При питании радиоаппаратуры от батареек и аккумуляторов полезно знать распространённые схемы соединения батарей и аккумуляторов. Дело в том, что каждый вид батареек имеет допустимый разрядный ток.
Разрядный ток – наиболее оптимальное значение тока, который потребляется от батареи. Если потреблять от батарейки ток, превышающий разрядный, то надолго этой батарейки не хватит, она не сможет полностью отдать свою расчётную мощность.
Наверное, замечали, что для электромеханических часов используются “ пальчиковые ” (формата АА) или “ мизинцевые ” (формата ААА) батарейки, а для переносного лампового фонаря батарейки побольше (формат R14 или R20), которые способны отдать значительный ток и имеют большую ёмкость. Размер батарейки имеет значение!
Иногда требуется обеспечить батарейное электропитание прибора, который потребляет значительный ток, но стандартные батареи (например R20, R14) не могут дать необходимый ток, он для них выше разрядного. Что делать в этом случае?
Необходимо взять несколько однотипных батареек и соединить их в батарею.
Параллельное соединение элементов питания.
Так, например, если необходимо обеспечить значительный ток для аппарата применяют параллельное соединение батареек. В таком случае общее напряжение составной батареи будет равно напряжению одного элемента питания, а разрядный ток будет во столько раз больше, сколько батареек применяется.
На рисунке составная батарея из трёх 1,5 вольтовых батареек G1, G2, G3. Если учесть, что среднее значение разрядного тока для 1 батарейки формата АА 7-7,5 mA (при сопротивлении нагрузки 200 Ом), то разрядный ток составной батареи составит 3 * 7,5 = 22,5 mA. Вот так, приходится брать количеством.
Последовательное соединение элементов питания.
Бывает, что необходимо обеспечит напряжение 4,5 – 6 вольт, применяя батарейки на 1,5 вольта. В таком случае нужно соединить батарейки последовательно, как на рисунке.
Разрядный ток такой составной батареи составит значение для одного элемента, а общее напряжение будет равно сумме напряжений трёх батареек. Для трёх элементов формата АА (“пальчиковых”) разрядный ток составит 7-7,5 mA (при сопротивлении нагрузки 200 Ом), а суммарное напряжение – 4,5 Вольт.
Итак, подведём итоги.
-
Если необходимо обеспечить значительный ток, то применяется параллельное соединение элементов питания. Рассчитать значения напряжения и разрядного тока для параллельно составленной батареи питания: I=IG1* N — общий разрядный ток параллельно составленной батареи. где N – количество однотипных элементов питания. IG1 – разрядный ток одного элемента питания. U=UG1 — общее напряжение параллельно составленной батареи. где UG1 – напряжение одного элемента питания. Понятно, что никакого выигрыша по напряжению при параллельном соединении мы не получим.
Рассчитывается всё довольно просто. Сначала, вычисляем напряжение на 3 последовательно соединённых элементах одного из плеч. Ток последовательно соединённых элементов будет равен току одного элемента.
Далее складываем токи каждого плеча из трёх элементов. В данном случае у нас два плеча. Напряжение параллельно соединённых элементов равно напряжению одного элемента. Здесь 3 последовательно соединённых батарейки представляют как бы один элемент питания на 4,5 Вольт.
В радиолюбительской практике не всегда необходимо вычислять разрядный ток, так как потребляемый приборами ток, как правило, нестабилен, всё зависит от режима работы конкретного аппарата.
Понятно, что магнитола потребляет больший ток в режиме воспроизведения, нежели в режиме прослушивания радио. В режиме воспроизведения ток потребления возрастает из-за работы двигателя протяжки ленты, тогда как в режиме радио необходимо лишь усилить принятый сигнал.
Необходимо просто правильно оценивать токовую нагрузку на составную батарею, ведь некоторые приборы могут потреблять значительный ток и в таких случаях можно добавить пару дополнительных элементов питания. В таком случае автономное время работы Вашего прибора возрастёт.
Как от литиевого аккумулятора получить 5 и 12 вольт
Как получить 12 или 5 вольт – самые распространённые напряжения, не имея розетки и блоков питания? Эта устройство, а точнее небольшая самодельная платка, как раз и обеспечивает на выходе постоянный ток 12 В / 200 мА плюс регулируемые от 5 В / 500 мА, имея на входе подключенные аккумуляторные батарейки Li-Ion 7.4 В LiPO. Плата представляет собой DC-DC инвертор на основе микросхемы регулятора CS5171 и LM317. Преобразователь постоянного тока DC-DC обеспечивает 12 В от 2x LiPO типоразмера 18650, а LM317 – это регулируемый выход от 1,2 В до 6 В.
Схема принципиальная преобразователя в 5 и 12 В
Не обязательно использовать именно такие аккумуляторы, входное напряжение для микросхем допустимо в пределах от пары вольт, до 30 В. Так что подберите любую удобную конфигурацию питания.
Полезное: Тестер проводки и фар для трейлера или прицепа
Список деталей для сборки устройства
Если нету указанных на схеме микросхем – ставьте любые другие с аналогичными функциями.
Технические характеристики DC-DC инвертора
- Входное питание: 2x LiPO аккумулятора с общим напряжением 7.4 В
- Входное напряжение допустимое от 3 до 25 В (по даташитам м/с)
- Потребление тока до 0,5 Ампер
- Выход 1: 12 В 200 мА постоянного тока
- Выход 2: от 1,2 до 6 В постоянного тока
- Размер печатной платы: 35 мм х 27 мм
Небольшая плата инвертора может быть установлена непосредственно на задней панели бокса 2x LiPO 18650 и закреплена с помощью винтов 2xM3. Потенциометр P1 нужен для регулировки напряжения от 1,2 В до 6 В.
Печатная плата находится в архиве
НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ