Во сколько раз увеличится сила натяжения нити
Перейти к содержимому

Во сколько раз увеличится сила натяжения нити

  • автор:

Определение силы натяжения нити

Силой натяжения называют силу, приложенную к концам объекта и создающую внутри него упругую деформацию.

Длина тела, к которому приложена сила, обычно многократно больше, чем его толщина. Примерами таких объектов являются веревка, канат, трос, леска, проволока. Сила натяжения визуально проявляется в следующих примерах:

  • создание строительного отвеса;
  • установка растяжек для фиксации радиоантенн;
  • поведение арматуры внутри напряженного бетона;
  • устройство корабельного такелажа.

Как определить силу, формулы

Натяжение проявляется по-разному. Поэтому сила натяжения может рассчитываться определенным образом, в зависимости от окружающих условий.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

С неподвижно закрепленным верхним концом

Простейшим примером проявления силы натяжения является нить с закрепленным на ней грузом. Верхний конец такого подвеса фиксируется неподвижно. В этом случае сила натяжения будет соответствовать силе тяжести, которая действует на тело. Формула для расчета:

где m – это масса тела, а g представляет собой ускорение свободного падения.

Если нить под углом

В случае, когда груз расположен под определенным углом, характер силы натяжения несколько изменяется. Примером такой системы выступает маятник.

где а равен углу отклонения.

Формула с учетом ускорения и массы

В ситуации, при которой на груз оказывается сила натяжения, приводящая его в движение вверх, следует использовать такую формулу для ее расчета:

Сила натяжения во вращающейся системе

Описание

Такое явление можно наблюдать, когда система из нити и тела вращается во время раскручивания подвеса вокруг своей оси с закрепленным на одном его конце объектом: центрифуга, маятник, качели. Сила натяжения, возникающая внутри подвеса, характеризуется центробежной силой и в условиях вращения в вертикальной плоскости циклически претерпевает изменения. То есть можно наблюдать зависимость силы от угла отклонения от вертикали:

  • приближение к земле приводит к увеличению силы;
  • во время удаления от земли сила слабеет.

Формула расчета

Рассчитать силу натяжения в условиях вращающейся системы можно так:

Обозначение, единица измерения

Существуют определенные стандарты для написания формулы силы натяжения. Как и другие физические силы, натяжение обозначается F. В качестве единицы измерения используют Ньютон (H)

Примеры решения задач

Задание 1

На невесомую нерастяжимую нить действует сила натяжения Т=4400Н. Необходимо определить максимальное ускорение подъема груза, масса которого равна m=400 кг, подвешенного на этой нити. При этом нить должна сохранить целостность.

Решение

Представив все силы, оказывающие действие на тело, необходимо составить формулу второго закона Ньютона. Тело является материальной точкой, а силы приложены к центру его массы.

Задача 1

\(\bar\) является силой натяжения нити.

Проекция уравнения будет иметь следующий вид:

Данное выражение позволяет рассчитать ускорение:

Так как все величины, изложенные в задании, соответствуют единицам СИ, можно провести корректные вычисления

Ответ: a = 1.2 \(м/с^2\)

Задание 2

На иллюстрации изображен шар, который обладает массой m=0.1 кг. Будучи зафиксирован на нити, шарик совершает движение по окружности в горизонтальной плоскости. Длина подвеса составляет l=5 м, а радиус окружности – R=3 м. Требуется вычислить модуль силы натяжения нити.

Решение

Необходимо воспользоваться вторым законом Ньютона и записать его для сил, которые действуют на шар. Центростремительное ускорение при его вращении по окружности будет записано следующим образом:

Задача 2

Проекции данной формулы по осям определяются следующим образом:

X: \(T sin α = ma = mω2R\)

Y: \(-mg + T cos α = 0\)

Таким образом, из уравнения Y получаем расчет модуля силы натяжения нити:

Анализ рисунка позволяет вывести следующее уравнение:

\(\sin \alpha = \frac\rightarrow \cos \alpha = \sqrt<1-\left(\frac \right)^>\)

Если cos α заменить уравнением для расчета модуля силы натяжения нити, то получим следующую формулу:

Значения основных величин, выраженные в СИ, можно подставить в конечную формулу для расчета силы натяжения нити:

Формула силы натяжения нити

Силу натяжения определяют как равнодействующую сил $(\bar)$, приложенных к нити, равную ей по модулю, но противоположно направленную. Устоявшегося символа (буквы), обозначающего силу натяжения нет. Ее обозначают и просто $\bar$ и $\bar$, и $\bar$ . Математически определение для силы натяжения нити можно записать как:

где $\bar$ = векторная сумма всех сил, которые действуют на нить. Сила натяжения нити всегда направлена по нити (или подвесу).

Чаще всего в задачах и примерах рассматривают нить, массой которой можно пренебречь. Ее называют невесомой.

Еще одним важной характеристикой нити при расчете силы натяжения является ее растяжимость. Если исследуется невесомая и нерастяжимая нить, то такая нить считается просто проводящей через себя силу. В том случае, когда необходимо учитывать растяжение нити, применяют закон Гука, при этом:

где k – коэффициент жесткости нити, $\Delta l$ – удлинение нити при растяжении.

Единицы измерения силы натяжения нити

Основной единицей измерения силы натяжения нити (как и любой силы) в системе СИ является: [T]=Н

Примеры решения задач

Задание. Невесомая, нерастяжимая нить выдерживает силу натяжения T=4400Н. С каким максимальным ускорением можно поднимать груз массой m=400 кг, который подвешивают на эту нить, чтобы она не разорвалась?

Решение. Изобразим на рис.1 все силы, действующие на груз, и запишем второй закон Ньютона. Тело будем считать материальной точкой, все силы приложенными к центру масс тела.

где $\bar$ – сила натяжения нити. Запишем проекцию уравнения (1.1) на ось Y:

Из выражения (1.2) получим ускорение:

Все данные в задаче представлены в единицах системы СИ, проведем вычисления:

Ответ. a=1,2м/с 2

Warning: file_put_contents(./students_count.txt): failed to open stream: Permission denied in /var/www/webmath-q2ws/data/www/webmath.ru/poleznoe/guide_content_banner.php on line 20

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 463 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Задание. Шарик, имеющий массу m=0,1 кг прикрепленный к нити (рис.2) движется по окружности, расположенной в горизонтальной плоскости. Найдите модуль силы натяжения нити, если длина нити l=5 м, радиус окружности R=3м.

Решение. Запишем второй закон Ньютона для сил, приложенных к шарику, который вращается по окружности с центростремительным ускорением:

Найдем проекции данного уравнения на обозначенные на рис.2 оси X и Y:

$$ \begin X: \quad T \sin \alpha=m a=m \omega^ R(2.2) \\ Y: \quad-m g+T \cos \alpha=0 \end $$

Из уравнения (2.3) получим формулу для модуля силы натяжения нити:

Из рис.2 видно, что:

Подставим (2.5) вместо $\cos \alpha$ в выражение (2.4), получим:

Так как все данные в условиях задачи приведены в единицах системы СИ, проведем вычисления:

Ответ. T=1,225 Н

Как рассчитать силу натяжения в физике

Соавтор(ы): Bess Ruff, MA. Бесс Руфф — аспирантка Университета штата Флорида, работает над получением степени PhD по географии. Получила степень магистра экологии и менеджмента в Калифорнийском университете в Санта-Барбаре в 2016 году. Проводила исследования для проектов по морскому пространственному планированию в Карибском море и обеспечивала научную поддержку в качестве дипломированного участника Группы устойчивого рыболовства.

Количество просмотров этой статьи: 301 253.

В этой статье:

В физике, сила натяжения — это сила, действующая на веревку, шнур, кабель или похожий объект или группу объектов. Все, что натянуто, подвешено, поддерживается или качается на веревке, шнуре, кабеле и так далее, является объектом силы натяжения. Подобно всем силам, натяжение может ускорять объекты или становиться причиной их деформации. Умение рассчитывать силу натяжения является важным навыком не только для студентов физического факультета, но и для инженеров, архитекторов; те, кто строит устойчивые дома, должны знать, выдержит ли определенная веревка или кабель силу натяжения от веса объекта так, чтобы они не проседали и не разрушались. Приступайте к чтению статьи, чтобы научиться рассчитывать силу натяжения в некоторых физических системах.

Метод 1 из 2:

Определение силы натяжения на одной нити

Step 1 Определите силы на каждом из концов нити.

  • Для решения множества физических задач, мы предполагаем идеальную веревку — другими словами, наша веревка тонкая, не обладает массой и не может растягиваться или рваться.
  • Для примера, давайте рассмотрим систему, в которой груз подвешен к деревянной балке с помощью одной веревки (смотрите на изображение). Ни сам груз, ни веревка не двигаются — система находится в покое. Вследствие этого, нам известно, чтобы груз находился в равновесии, сила натяжения должна быть равна силе тяжести. Другими словами, Сила натяжения (Ft) = Сила тяжести (Fg) = m × g.
    • Предположим, что груз имеет массу 10 кг, следовательно, сила натяжения равна 10 кг × 9,8 м/с 2 = 98 Ньютонов.

    Step 2 Учитывайте ускорение.

    • Предположим, что в нашем примере на веревку подвешен груз 10 кг, и вместо того, чтобы быть прикрепленным к деревянной балке, его тянут вверх с ускорением 1 м/с 2 . В этом случае, нам необходимо учесть ускорение груза, также как и ускорение силы тяжести, следующим образом:
      • Ft = Fg + m × a
      • Ft = 98 + 10 кг × 1 м/с 2
      • Ft = 108 Ньютонов.

      Step 3 Учитывайте угловое ускорение.

      • Так как направление и значение центробежной силы меняются в зависимости от того, как объект движется и меняет свою скорость, то полное натяжение веревки всегда параллельно веревке в центральной точке. Запомните, что сила притяжения постоянно действует на объект и тянет его вниз. Так что, если объект раскачивается вертикально, полное натяжение сильнее всего в нижней точке дуги (для маятника это называется точкой равновесия), когда объект достигает максимальной скорости, и слабее всего в верхней точке дуги, когда объект замедляется.
      • Давайте предположим, что в нашем примере объект больше не ускоряется вверх, а раскачивается как маятник. Пусть наша веревка будет длиной 1,5 м, а наш груз движется со скоростью 2 м/с, при прохождении через нижнюю точку размаха. Если нам нужно рассчитать силу натяжения в нижней точке дуги, когда она наибольшая, то сначала надо выяснить равное ли давление силы тяжести испытывает груз в этой точке, как и при состоянии покоя — 98 Ньютонов. Чтобы найти дополнительную центробежную силу, нам необходимо решить следующее:
        • Fc = m × v 2 /r
        • Fc = 10 × 2 2 /1.5
        • Fc =10 × 2,67 = 26,7 Ньютонов.
        • Таким образом, полное натяжение будет 98 + 26,7 = 124,7 Ньютона.

        Step 4 Учтите, что сила.

        • Разделение силы гравитации на два вектора сможет помочь вам визуально изобразить это состояние. В любой точке дуги вертикально раскачивающегося объекта, веревка составляет угол «θ» с линией, проходящей через точку равновесия и центр вращения. Как только маятник начинает раскачиваться, сила гравитации (m × g) разбивается на 2 вектора — mgsin(θ), действуя по касательной к дуге в направлении точки равновесия и mgcos(θ), действуя параллельно силе натяжения, но в противоположном направлении. Натяжение может только противостоять mgcos(θ) — силе, направленной против нее — не всей силе тяготения (исключая точку равновесия, где все силы одинаковы).
        • Давайте предположим, что, когда маятник отклоняется на угол 15 градусов от вертикали, он движется со скоростью 1,5 м/с. Мы найдем силу натяжения следующими действиями:
          • Отношение силы натяжения к силе тяготения (Tg) = 98cos(15) = 98(0,96) = 94,08 Ньютона
          • Центробежная сила (Fc) = 10 × 1,5 2 /1,5 = 10 × 1,5 = 15 Ньютонов
          • Полное натяжение = Tg + Fc = 94,08 + 15 = 109,08 Ньютонов.

          Step 5 Рассчитайте трение.

          • Давайте предположим, что наш груз в 10 кг больше не раскачивается, теперь его буксируют по горизонтальной плоскости с помощью веревки. Предположим, что коэффициент трения движения земли равен 0,5 и наш груз движется с постоянной скоростью, но нам нужно придать ему ускорение 1м/с 2 . Эта проблема представляет два важных изменения — первое, нам больше не нужно рассчитывать силу натяжения по отношению к силе тяжести, так как наша веревка не удерживает груз на весу. Второе, нам придется рассчитать натяжение, обусловленное трением, также как и вызванное ускорением массы груза. Нам нужно решить следующее:
            • Обычная сила (N) = 10 кг & × 9,8 (ускорение силы тяжести) = 98 N
            • Сила трения движения (Fr) = 0,5 × 98 N = 49 Ньютонов
            • Сила ускорения (Fa) = 10 kg × 1 м/с 2 = 10 Ньютонов
            • Общее натяжение = Fr + Fa = 49 + 10 = 59 Ньютонов.

            Формула силы натяжения нити

            Здесь – сила натяжения нити, – векторная сумма сил, действующих на нить.

            Единица измерения силы – Н (ньютон).

            Эта формула – следствие третьего закона Ньютона применительно к нити. Если на нити подвешен какой-то груз, который находится в покое, то сила натяжения нити по модулю равна весу этого груза. Обычно в задачах участвует невесомая нерастяжимая нить, которая просто проводит через себя силу, однако встречаются задачи, где нить под воздействием силы растягивается. При этом она ведёт себя как пружина, подчиняясь закону Гука:

            Где – жёсткость нити, — удлинение нити.

            Примеры решения задач по теме «Сила натяжения нити»

            \[ P = k \cdot \Delta l \text{ } \rightarrow \text{ } \Delta l = \frac{P}{k} \]

            (м)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *