как выразить Y через x. подскажите как выразить у через х в линейном уравнении 2у-х=4 .
Перемещай члены уравнения так, чтобы переменные оказались по разные стороны знака равенства:
2у-х=4 => 2y=4+x (при переносе через знак равенства какого-либо слагаемого, его знак должен изменитья на противоположный)
2y=4+x => y=(4+x)/2 ( чтобы избавиться от множителя в одной стороне уравнения, мы имеем право поделить другую сторону на то же число)
Вот и получился ответ, в котором «у» выражен через «х».
Для обратного результата — преобразуй так, чтобы «х» оказался в одиночестве в одной стороне уравнения:
2y-x=4 => 2y=4+x => 2y-4=x
выразите у через х х-2у=8
y=2+1/2x
это элементарно оО
Как выразить х
Как выразить x?
Есть такое уравнение. yx mod z = c Как из него выразить x?
Как выразить?
A = (b*c) mod N Как выразить b?
Как выразить цель?
Здравствуйте! Я создал трехмерную сцену(по типу комнаты), с освещением и возможностью передвижения.
1593 / 1043 / 278
Регистрация: 05.10.2014
Сообщений: 5,136
плюс x минус x
4217 / 3412 / 396
Регистрация: 15.06.2009
Сообщений: 5,818
Сообщение от АРКТУР
не понимаю как выразить переменную х
Никак, уравнение трансцендентное. Решение возможно только численное.
87844 / 49110 / 22898
Регистрация: 17.06.2006
Сообщений: 92,604
Помогаю со студенческими работами здесь
Как численно выразить X
Помогите ! Как численно выразить X из уравнения x*tg(x)-1/3=0 ! Нужно сделать метод итерации в.
Как выразить переменную?
подскажите пожалуйста, почему "решение не было найдено"?
Как выразить интеграл на си?
В общем, столкнулась с тем, что не могу никак выразить интеграл. Пишу курсовую по типам движения.
Как выразить в С корень n-степени.
Как выразить в С корень n-степени. Подскажите.
Как выразить неизвестное из формулы
Всем привет, подскажите как из формулы вида: y = x^7/(x-1)^2.5 выразить x через y ? .
Или воспользуйтесь поиском по форуму:
Как выразить x из уравнения?
Вики предлагает решить методом перебора. А выразить было бы прикольно.
Интересной показалась тема с полиномиальным алгоритмом. Спасибо за ответ.
А выразить было бы прикольно.
Что значит «выразить»? Вот в комментарии выше и ответе ниже «выражено» (с ошибкой одной и той же). Сильно полезно оказалось?
Для правильного вопроса надо знать половину ответа
y x mod z = c
y x = c + z × i, i ∈ N
x = logy(c + z × i), i ∈ N
Ответ написан более трёх лет назад
Нравится 1 13 комментариев
Вопрос из теории чисел, а не действительных функций.
AVKor, От этого преобразование не становится неправильным, добавляется только ограничение x ∈ N.
Rsa97, Во-первых, это преобразование совершенно бессмысленно (оно ничего не даёт). Во-вторых, сравнения по модулю рассматриваются в кольце целых чисел (а не на множестве натуральных).
AVKor, Учитывая тэг RSA, речь идёт о криптографии. Значит x > 0. А множество целых чисел, больших нуля — это и есть множество натуральных чисел.
Учитывая тэг RSA, речь идёт о криптографии. Значит x > 0.
То, что x>0, RSA — не RSA, не имеет значения. Речь не о x.
y x = c + z × i, i ∈ N
2 1 = 2 mod 3, 2 1 = 2 + 3*0;
2 1 = 5 mod 3, 2 1 = 5 + 3*(-1);.
AVKor, опять же, поскольку речь об RSA, то
x > 0, 0 ≤ y < z - из алгоритма RSA
0 ≤ c < z - из определения mod
y x ≥ 0 => с + z × i ≥ 0
но если i < 0, то с + z × i < 0, что не соответствует условиям.
Значит i ≥ 0 или i ∈ N0 (про N я слегка ошибся).
И кстати, 2 1 = 5 mod 3, 2 1 = 5 + 3*(-1) — тут ошибка. У вас c > z (5 > 3), чего быть не может.
У вас c > z (5 > 3), чего быть не может.
Нет.
Учите теорию сравнений.
a = b mod m (m ∈ N, a, b ∈ Z) по определению тогда и только тогда, когда m | a-b. Или любое эквивалентное определение.
Ивана Матвеича вам в руки. Или любой другой учебник по теории чисел.
AVKor, То есть вы хотите сказать, что при делении неотрицательного целого числа на положительное целое остаток может быть больше делителя? Или меньше нуля?
То есть вы хотите сказать, что при делении неотрицательного целого числа на положительное целое остаток может быть больше делителя? Или меньше нуля?
Я сказал ровно то, что хотел сказать, в комментарии выше:
Учите теорию сравнений.
a = b mod m (m ∈ N, a, b ∈ Z) по определению тогда и только тогда, когда m | a-b. Или любое эквивалентное определение.
Возьмите, наконец, любой учебник и прочитайте определение, вместо того чтобы писать что-то наугад, не зная предмета.
Деление c остатком (деление по модулю) — арифметическая операция, играющая большую роль в арифметике, теории чисел и алгебре. Чаще всего эта операция определяется для целых или натуральных чисел следующим образом. Пусть a и b — целые числа, причём b ≠ 0. Деление с остатком a («делимого») на b («делитель») означает нахождение таких целых чисел q и r, что выполняется равенство:
a = b ⋅ q + r
Таким образом, результатами деления с остатком являются два целых числа: q называется неполным частным от деления, а r — остатком от деления. На остаток налагается дополнительное условие: 0 ⩽ r < |b|, то есть остаток от деления должен быть неотрицательным числом и по абсолютной величине меньше делителя. Это условие обеспечивает однозначность результатов деления с остатком для всех целых чисел, то есть существует единственное решение уравнения a = b ⋅ q + r при заданных выше условиях.
Так что, батенька, попробуйте сами почитать учебники и найти свою ошибку.
Rsa97, Вы вообще читать, похоже не умеете. Неспособны отличить определения сравнимости и остатка.
Определение сравнимости я выше давал.
Ещё одно (равносильное) определение: два числа a, b ∈ Z сравнимы по модулю m ∈ N по определению тогда и только тогда, когда их остатки при делении на m равны.
Если мало примеров выше, вот ещё один:
1 = -2 mod 3 (поскольку 3 | 1 — (-2) — по первому определению; 1 = 1 + 3*0, -2 = 1 + 3*(-1) — по второму определению).
А читать учебники мне нет необходимости, у меня специальность «теория чисел». У меня даже студенты-двоечники умели различать, сравнимы два числа или нет. А вам это ещё предстоит научиться делать.
В общем, учите матчасть. Читайте Главу третью, параграф 1, пункты a., b., c учебника Виноградова или в любом другом аналогичный материал.
AVKor, А где вы в алгоритме RSA увидели слово «сравнимость»?
Rsa97, Хотите упорно продолжать ломать эту комедию?
Открываете любой материал, посвящённый RSA, и ищете там слова сравнимо/сравнение/сравнимость или (если на английском) congruent/congruence. Например, вот тут, чтобы далеко не ходить. И вот такая фиговина, где mod написано — это называется сравнением по модулю.
Ваш ответ на вопрос
Войдите, чтобы написать ответ
- Математика
- +1 ещё
Правильная ли теория?
- 1 подписчик
- 28 апр.
- 103 просмотра
Как выразить x с уравнения? [закрыт]
Закрыт. Этот вопрос не по теме. Ответы на него в данный момент не принимаются.
Учебные задания допустимы в качестве вопросов только при условии, что вы пытались решить их самостоятельно перед тем, как задать вопрос. Пожалуйста, отредактируйте вопрос и укажите, что именно вызвало у вас трудности при решении задачи. Например, приведите код, который вы написали, пытаясь решить задачу
Закрыт 2 года назад .
Как выразить x из данного уравнения: