Как вычислить высоту равностороннего треугольника
Перейти к содержимому

Как вычислить высоту равностороннего треугольника

  • автор:

Высота равностороннего треугольника

Равносторонний треугольник является правильным многоугольником (геометрическая фигура, у которой все углы и все стороны равны). Фактически, это значительно упрощает процесс вычисления любых параметров, характеризующих такой треугольник, в том числе, длину высоты.

В равностороннем треугольнике все три высоты — одинаковой длины, поэтому найдя любую из них, можно применять полученное значение в отношении всех трех линий. Более того, все высоты полностью совпадают со всеми тремя медианами, биссектрисами и серединными перпендикулярами, называемыми иначе медиатриссами. Точка пересечения всех трех линий обладает свойствами точки пересечения высот, точки пересечения медиан и точки пересечения биссектрис одновременно, являя собой любой из возможных центров треугольника, в том числе центр вписанной и описанной окружностей.

Исходя из этого, чтобы найти высоту равностороннего треугольника, можно использовать абсолютно любые известные параметры, например, сторону треугольника.

Высота равностороннего треугольника, проведенная к любой стороне, создает внутри него прямоугольный треугольник, в котором можно ее вычислить, используя тригонометрические отношения, так как известно, что все углы в равностороннем треугольнике имеют по 60 градусов. Для полученного прямоугольного треугольника высота будет катетом, противолежащем углу в 60 градусов, а сторона равностороннего треугольника — гипотенузой, соответственно, чтобы найти высоту, нужно применить синус. Если подставить вместо угла альфа 60 градусов, получится, что высота равностороннего треугольника равна половине стороны, умноженной на корень из трех.

Пожалуйста напишите с чем связна такая низкая оценка:

Высота равностороннего треугольника

Равносторонний треугольник определяется всего одной величиной – значением стороны. Все стороны в таком треугольнике равны между собой, а углы известны заранее и равны 60 градусам каждый, поэтому чтобы посчитать любую характеристику или величину равностороннего треугольника достаточно знать его сторону. Убедимся в этом и выведем формулу высоты равностороннего треугольника.

Что такое равносторонний треугольник?

Для начала нужно вспомнить, что такое равносторонний треугольник, определить некоторые его свойства и только тогда выводить формулу высоты.

Равносторонний треугольник – это треугольник, все стороны которого равны между собой. Все углы в таком треугольнике равны между собой (60 градусов).

Правильный треугольник

Равносторонний треугольник является равнобедренным, но основанием можно считать любую часть треугольника.

Формула

Формулу высоты равностороннего треугольника выведем тремя способами: через теорему Пифагора, с помощью формулы площади прямоугольного треугольника и через тригонометрическую функцию. Три способа используем, чтобы показать несколько вариантов доказательства и иметь возможность максимально быстро найти значение высоты при любом условии задачи.

Рисунок к доказательству

Сначала выведем формулу через площадь.

В классической формуле, подходящей для любого треугольника, площадь равна половине произведения основания на высоту. Существует также формула площади для правильного треугольника: $S=\sqrt*$

Приравняем две формулы и выведем формулу высоты.

$<1\over2>*a*h=\sqrt* $ – сократим обе части на а.

$H=\sqrt*$ – и получим формулу высоты равностороннего треугольника.

С другой стороны, в равностороннем треугольнике высота, проведенная к основанию, является медианой и высотой. То есть, высоту можно найти как катет прямоугольного треугольника через теорему Пифагора.

Рисунок к доказательству

Если в том же малом прямоугольном треугольнике обратить внимание на известный острый угол, то можно вывести значение высоты через синус угла в 60 градусов.

Синус – это отношение противолежащего катета к гипотенузе.

Воспользуемся этим отношением и выразим высоту.

$h=a*sin(60)=\over>$ – как видно, получился тот же результат, что и в первом способе. Это говорит о том, что в равностороннем треугольнике только две формулы высоты, а все остальные способы доказательства можно свести к получившимся выводам.

Что мы узнали?

Мы узнали, что такое равносторонний треугольник, вывели несколько формул для нахождения высоты равностороннего треугольника. Показали несколько путей вывода формул, которые могут помочь быстро вспомнить, как находится высота или использовать те же приемы для нахождения других величин в равностороннем треугольнике.

Высота треугольника

Высота, проведенная в любом треугольнике, делит его на два прямоугольных треугольника, становясь смежным катетом. Сторона, на которую опущена высота, оказывается также разделенной на две пропорциональных части. Зная все три стороны, можно собрать их по теореме Пифагора, и приравняв высоту в качестве катета в двух вышеуказанных треугольниках, получить ее формулу для любого произвольного треугольника: С другой стороны, можно использовать сторону, прилежащую к высоте и угол α , чтобы вычислить высоту треугольника.

Известная его сторона будет гипотенузой в прямоугольном треугольнике, а сама высота – катетом, противолежащим углу α . Два этих измерения связывает синус угла, поэтому высота равна его произведению на сторону a : h=a sin⁡α Высота в прямоугольном треугольнике, опущенная из прямого угла (остальные две совпадают с катетами), получает особые свойства. Так как все три получившихся прямоугольных треугольника подобны друг другу, их стороны составляют пропорцию, которая раскладывается как квадрат высоты, равный произведению проекцию катетов на гипотенузу, или проще говоря, частей гипотенузы, на которые ее делит высота.

Из этого следует, что высота равна квадратному корню из данного произведения, а это есть не что иное как среднее пропорциональное приведенного выражения.
В равностороннем треугольнике, высота делит угол, из которого она исходит, на два одинаковых угла по 30° . Высота, оказываясь катетом, прилежащим к этому углу, внутри прямоугольного треугольника, подчиняется отношению косинуса угла α , а так как , а гипотенуза a , то формула высоты в равностороннем треугольнике будет выглядеть так:

Как найти высоту равностороннего треугольника, если известно, что его площадь равна 12 √(3) см^2 ?

Вообще высота равностороннего треугольника равна квадратному корню от его площади, умноженной на √3.

Площадь равнобедренного треугольника вычисляется по формуле
[ссылка заблокирована по решению администрации проекта]

Похожие вопросы

Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *