Энергия и человек. Ряд случайных сравнений
В физике для решения задач иногда применяется полунаучный «метод размерностей», когда зная размерность искомой величины, мы можем догадаться, что на что поделить, сложить, умножить, чтобы получить правильный ответ. Я решил взять размерность «энергия» и сравнить «яблоки с бананами», а именно человека как энергетическую систему с другими системами.
В чем измеряется, энергия?
Disclaimer: все вычисления могут быть не точны и главная цель показать порядок чисел.
Человек — потребитель энергии. 2 кВт*ч, 100 Вт
Человек в среднем потребляет около 2000 ккалорий в день, что дает около 2 кВт*ч или около 100 Ватт, средней мощности. Можно представить, что человек ест, как одна большая лампочка на накаливания на 100 Ватт.
Энергопотребление человека сравнительно небольшое по сравнению с приборами, которые нас окружают. Можно сказать, что человек произвел техническую революцию. Человек принимает «в себя» меньше энергии, чем он использует «для себя» даже только в домашних условиях (средний расчет больше 100 кВт*ч в месяц).
Человек — вычислительная машина. 30 Вт
Распространены оценки, что мозг съедает от 200 до 1000 Ккал (стрессовые ситуации), то есть от 20%-40% энергии, что дает оценку средней мощности 30 Вт.
Мозг — крайне эффективная система. Да современные ноутбуки производят операции гораздо лучше нас и средняя мощность находится около 30 Вт, а телефоны вообще 0.5-1 Вт. Зато современные видеокарты потребляют в среднем от 250 Вт и все равно не могут сравниться с мозгом по скорости и точности обработки визуальной информации. Так что, человек очень неплохой процессор, правда только для специфических задач.
Человек — аккумулятор. 10 кВт*ч
Говорят, человек может не есть 3-7 дней. Понятно, что не питаясь, человек начнет потреблять меньше энергии на внутренние и на внешние нужды. Можно положить, что съев двойную суточную норму, человек будет активен 2 дня (при наличии воды), что дает грубую оценку 10 кВт*ч.
Если посчитать, энергоемкость человека, то мы можем получить крайне разные цифры, вес людей, которые могут прожить N-е количество дней и произвести какую-то полезную работу, крайне разнится от 50 кг — 150 кг. Скорее всего, средняя энергоемкость равна 0.1 кВт*ч/кг, что не так и хорошо и не так плохо. Мы находимся между бензином (10 кВт*ч/кг) и Liion (0.1 кВт*ч/кг), ближе к аккумуляторам.
Человек — потребитель солнечной энергии. 1-2 солнечные панели
Сегодняшняя солнечная панель дает около 300 Ватт в пике, в умеренных широтах средний КИУМ до 20% (солнце светит только днем и слабо). Мы знаем, что человек недолговечный, но все-таки аккумулятор, поэтому в среднем 2 панелей достаточно, чтобы человек питался только солнцем.
Если отбросить условности и сделать небольшие прорывы в технологиях (использование дорогих элементов позволяет достигать до 40% КПД в панелях), человеку будет достаточно носить «солнечную одежду» для того, чтобы получать всю необходимую энергию.
Человек — обогреватель
Процитирую статью про одежду: в покое человеческое тело вырабатывает 80 ватт тепла, а теряет при этом за счет дыхания 10 ватт, теплового излучения — 30 ватт, теплопроводности и конвекции — 20 ватта, испарения влаги — 20 ватт.
Получается человек крайне «слабый» обогреватель. Домашние обогреватели потребляют по 1 кВт и они покрывают нужды на обогрев только частично. Подогрев воды и обогрев помещений в принципе является самым большим энергопотреблением домашнего хозяйства. Приведу свой годовой расклад:
— Перемещение (транспорт, топливо): 8 000 кВт*ч за год.
— Электричество: 2 500 кВт*ч за год.
— Подогрев воды и обогрев: 30 000 кВт*ч за год.
Получается на средний ежедневный подогрев воды и обогрев уходит до 100 кВт*ч в день, что в 50 раз больше, чем человек в принципе потребляет.
Человек — средство передвижения (автомобиль, пешеход, велосипед)
Человек как активное живое существо может перемещаться в пространстве. Допустим человек может переместиться на 30 км за день пешком и на 120 км за день на велосипеде. Это не максимальные значения, конечно, спортсмены пробегают до 100 км и проезжают до 1000 км за день.
Попробуем сравнить человека как эффективную систему передвижения человека.
— Автомобиль с ДВС тратит в среднем 5 л на 100 км, 1 литр = 10 кВт*ч, что дает 500 Втч на км
— Электромобиль — 150-200 Вт*ч на км
— Пешеход — 2 кВт*ч разделить на 10-50 км, 50-200 Вт*ч на км
— Медленный/маленький электромобиль — 50-100 Вт*ч на км
— Электровелосипед — 10 Вт*ч/км (средняя скорость 10-15 кмч)
— Велосипедист — 2 кВт*ч разделить на 100-1000 км, 2-20 Вт*ч на км
Знаете еще интересные совпадения — пишите в комментариях.
Спасибо за внимание.
- Энергия и элементы питания
- Мозг
Наше тело как источник бесплатной электроэнергии: насколько это реально?
Человеческий организм – по сути своей биологическая машина, перерабатывающая органические соединения в процессе своей жизнедеятельности. Потребляемая пища раскладывается на более простые вещества, часть которых (белки, аминокислоты) используется как «строительный материал» для тела, а еще часть (углеводы) служит «топливом».
Сможет ли человек вырабатывать электроэнергию?
Человек за день потребляет количество еды, содержащее в себе примерно от 1500 до 5000 ккал энергии, а то и больше. Нормой считается 2500-3000 ккал, что в переводе на киловатт-часы равно 2,9-3,5 кВтч. Для сравнения, емкость батареи iPhone X равна 10,3 Втч. То есть, за день человек нуждается в количестве энергии, достаточной для того, чтобы зарядить около трех сотен Айфонов, или почти ежедневно заряжать один на протяжении года.
Не вся энергия, потребленная организмом, полностью задействуется им, так как КПД нашего тела ниже 100%. Значительная ее часть выделяется в виде тепла. В состоянии покоя тело выделяет в атмосферу примерно столько же энергии, сколько и одна «лампочка Ильича».
Человек выделяет тепло как лампочка © pxhere.com
При физических нагрузках количество энергии увеличивается, так как в организме активно протекают химические реакции, необходимые для работы мышц, а сами мышцы производят механическую работу. Работа эта тоже имеет КПД далеко не 100%, часть кинетической энергии тратится впустую.
Как можно понять исходя из цифр, в теле скрыт поистине огромный энергетический потенциал. Стоит взять хотя бы десятую долю энергии организма – и это решит навсегда проблему зарядки портативной электроники. Но реально ли обратить ту часть энергии тела, что тратится впустую, себе на пользу? Сейчас попробуем разобраться…
Механическая энергия: все уже придумано
Начать стоит с того, что люди уже давно придумали, как использовать часть механической энергии тела. Сотню лет существуют наручные часы с автоподзаводом, не нуждающиеся в ежедневном закручивании пружинки. Их механизм содержит маховик, совершающий колебания при движении руки. Он связан с пружиной, поэтому при колебаниях подтягивает ее. В итоге часы приходится заводить вручную только после длительного бездействия, остальное время это происходит как бы само по себе.
Маховик автоподзавода в форме полумесяца © aBlogtoWatch
Автоподзавод часов – штука хорошая, но и энергии на него тратится совсем мало. Ее явно недостаточно для чего-то более крупного и требовательного. Нас же интересует возможность получать от тела намного больше полезной энергии. А это уже гораздо сложнее.
Большой маховик на человека не повесишь, он будет приносить дискомфорт. Да и энергию такой маховик будет задействовать не ту, что тратится впустую, а требовать дополнительных затрат. Нацеплять везде маленьких механизмов (на руки, ноги, торс и т.д.) – тоже не вариант. Это и дискомфорт, и лишняя тяжесть, и потребность в миниатюрных генераторах, преобразующих механическую энергию в электрическую. В общем, пока что задействовать излишки механической энергии движения тела проблематично.
Единственным реальным источником «халявной» энергии является ходьба. Этот режим передвижения весьма малоэффективен с энергетической точки зрения, имеет низкий КПД. Чтобы убедиться в этом, сравните, сколько человек преодолеет за час пешком, а сколько – на велосипеде, затратив при этом примерно столько же (а то и меньше) энергии.
При ходьбе много энергии выделяется при касании ступней земли и переносе массы тела на нее. Двигаясь с умеренной скоростью, человек за минуту совершает около 120 шагов. В момент касания земли он осуществляет давление на нее, совершается механическая работа.
Делая шаг, человек прикладывает усилие около 80 кг © Medical Xpress
А теперь вспоминаем карманные зажигалки с искрообразованием от пьезоэлектрического элемента. Нажимая кнопку, человек сжимает пьезоэлемент, от чего тот выделяет электроэнергию, и возникает пробой искры, поджигающей газ. Однако энергии выделяется мало, если щелкать зажигалку раз в полсекунды (частота шагов), в среднем выйдет около 0,5 мВт (милливатт). Маловато, но все же можно попробовать посчитать дальше.
Пьезоэлемент зажигалки © Wikipedia
Площадь пьезоэлемента зажигалки – примерно 0,25 см², значит в 1 см² можно разместить 4 таких устройства. Площадь подошвы обуви – около 150 см², итого около 600 элементов можно поместить в подошву. Их нажатие даст около 300 мВт или 0,3 Вт. То есть, за час ходьбы будет выработано 0,3 Втч энергии.
0,3 Втч – маловато, даже без учета следующего нюанса: для активации пьезоэлемента зажигалки требуется усилие около 3 кг. 600 элементов потребуют усилия, создаваемого массой 1800 кг. Человек при ходьбе создает усилие всего около 120% от своей массы. При массе тела 70 кг это порядка 85 кг. Этого хватит лишь для активации 28 элементов, а 28×0,5=14 мВт, за час ходьбы будет выработано всего 0,014 Втч энергии, что совсем ничтожно.
Можно сделать вывод, что пока механическую энергию тела преобразовать в электрическую, не создавая неудобств для человека, проблематично. Оснастить обувь пьезоэлементами – реально, но снять с нее мощность, достаточную для удовлетворения базовых потребностей человека – нет.
Электричество из тепла
Тело человека выделяет в окружающую среду порядка 100 Вт тепловой энергии. Преобразовать ее в электрическую можно, используя эффект Зеебека: возникновения электродвижущей силы в термоэлектрических материалах, части которых находятся под действием разных температур. Разместив на теле пластину, которая другой стороной контактирует с окружающей средой, можно вырабатывать электричество за счет разницы температур.
Термоэлектрический генератор © YouTube
Чем больше разница температур – тем выше вырабатываемая мощность, поэтому такие генераторы (элементы Зеебека) особенно эффективны зимой на улице. Но есть ряд проблем.
КПД современных термоэлектрических материалов не превышает 10%, то есть из 100 Вт тепла будет выработано до 10 Вт электроэнергии. 10 Вт – это неплохо, ведь за час-два ношения элемента можно полностью зарядить смартфон. Но в таком случае понадобится покрыть 100% тела термоэлектрическим материалом. Естественно, это невозможно.
Выходом из ситуации может стать одежда, пошитая из термоэлектрической ткани, но такой пока нет. Существующие технологии позволяют производить только твердые или гибкие термоэлектрические пластины, непригодные для такого использования. Их максимум – это получать сотые или десятые доли ватта, будучи использованными в мелкой носимой электронике (например, смарт-часах и фитнесс-трекерах).
Современный термоэлектрогенератор © Wikipedia
В будущем не исключено появление термоэлектрических материалов пригодных для производства некоего подобия ткани, но ее применение будет ограниченным. Ведь летом в штанах и куртке особо не походишь, потому что жарко, а зимой такая одежда не будет в достаточной мере удерживать тепло из-за слабых теплоизоляционных свойств термоэлектрического материала. Если же носить куртку из такой ткани поверх футболки, свитера, а на ноги одевать подштанники – КПД термоэлектроткани упадет из-за меньшей разности температур.
Гибкий элемент Зеебека © Road to VR
Заключение
Расчеты показывают, что превращать механическую энергию тела в электрическую можно. Технология вовсе не нова, в ней нет ничего фантастического. Однако если использовать лишь ту энергию, что тратится впустую, то много электричества выработать не выйдет. Поэтому использование тела в качестве серьезного источника электрической энергии из кинетической станет реальным только при открытии новых, на порядки более эффективных, материалов с пьезоэлектрическим эффектом.
С теплом все немного лучше. Вырабатывать электричество из него ученые уже научились, КПД современных термоэлектрических элементов невысокий, но допустимый. Проблема в том, что эти элементы недостаточно гибкие и универсальные, чтобы эффективно их использовать. Пока что максимум, на что способны элементы Зеебека – питание мелкой носимой электроники, вроде «умных» часов.
В будущем теоретически реально создание гибких листовых термоэлектрических материалов, пригодных для использования в одежде. Куртка и штаны, пошитые из такой ткани, смогут вырабатывать несколько ватт энергии, достаточные для зарядки смартфона и более мелкой носимой электроники. Получить больше электроэнергии от тела на практике, скорее всего, не получится никогда.
Человеческое тепло станет вечным источником энергии?
Сможем ли мы в будущем подзаряжать бытовые приборы и гаджеты за счет бесплатной энергии, которую каждый день мы сами производим естественным образом, собственным теплом? Молодая инновативная швейцарская компания разработала технологию, преобразующую тепло человеческого тела в электрическую энергию.
Этот контент был опубликован на 06 мая 2021 года — 07:00
Луиджи Йорио
Журналист из Тичино, живущий в Берне, освещаю вопросы науки и общества в репортажах, статьях, интервью и аналитических материалах. Меня интересуют проблематика климата, энергетики и окружающей среды, а кроме того – все, что связано с миграцией, с помощью в целях развития и с правами человека.
- Больше материалов этого / этой автора
- Италоязычная редакция
Доступно на 9 других языках
When the human body becomes a powerhouse
Den menschlichen Körper zur Stromerzeugung nutzen
Quand le corps humain devient une centrale électrique
Quando il corpo umano diventa una centrale elettrica Оригинал
Cuando el cuerpo humano se convierte en una central eléctrica
Quando o corpo humano se transforma em uma usina elétrica
人間の体が電源になる日
عندما يُصبح جسم الإنسان مُولّـدًا كهربائيًا
当人体成为一座发电站
Русскоязычную версию подготовила Лейла Бабаева.
Забудьте на мгновение о солнечной энергии, биомассе, энергии ветра и гидроэнергетике. А что если будущие возобновляемые источники энергии кроются… в самих людях? Все мы смотрели «Матрицу» и по меньшей мере с тех самых пор знаем, что тело человека генерирует тепло. Злобные машины использовали в фильме этот феномен для того, чтобы, превратив людей в батарейки и «прокачав» им головы воображаемой реальностью, получить бесплатный и вечный источник энергии. Но что если эта технология однажды будет на самом деле реализована не в антиутопии, а на практике?
Внешний контент
Когда у нас поднимается температура или когда мы занимаемся спортом, мы ощущаем внутреннее тепло. Это свойство нашего организма отличает нас от рептилий и других холоднокровных животных, а еще оно стало источником бесчисленных литературных метафор, от «энергичного» характера до «горячего сердца», к которому должны, как известно, должны прилагаться холодная голова и чистые (в коронавирусном смысле) руки. В то же время не все знают о том, что тепло человеческого тела действительно можно напрямую преобразовывать в электричество.
Внешний контент
Идея не нова, однако высокотехнологичные устройства, например, умные часы и фитнес-браслеты, способные приносить практическую пользу, и которые можно было бы выпустить на массовый рынок, были разработаны только в самые последние годы. Швейцарский стартап Mithras намерен закрепиться на этом пока нишевом рынке и предложить свои инновационные разработки. Созданная при поддержке Высшей технической школы Цюриха (ETH) в 2018 году, компания принадлежит к десяткам перспективных стартапов, возникающих сейчас в стране та стыке экономики, бизнеса и фундаментальной науки.
Показать больше
Показать больше
«Наша работа обеспечила полёт дрона Ingenuity на Марсе»!
Этот контент был опубликован на 05 мая 2021 года Технологии, обеспечившие безотказную работу беспилотника Ingenuity, совершившего полёт над Марсом, не были бы созданы без швейцарских разработок.
«Я всегда хотел изобрести нечто, что имело бы большой потенциал развития и я интересовался сферой высоких технологий», — говорит Франко Мембрини (Franco Membrini), основатель и исполнительный директор компании Mithras. По образованию он историк, но его всегда привлекала перспектива изучения «энерго-теплового потенциала» человеческого организма поскольку он видел в этом «замечательную возможность внести вклад в создание сети децентрализованного производства электрической энергии», то есть сети, для которой не нужны столбы, провода, платины и огромные реакторы.
Потенциал: 10% потребляемой в мире энергии
Тепловая энергия, которую в среднем излучает человеческое тело за единицу времени, эквивалентна 100-ваттной электрической лампе накаливания. Большая часть этой энергии уходит без какой-либо пользы в окружающую среду, и вот как раз именно эти-то «отходы» молодая компания из города Кур что в кантоне Граубюнден и намерена использовать в качестве источника энергии с помощью термоэлектрического генератора (ТЭГ), который для выработки электроэнергии использует так называемый «эффект Зеебека».
Речь идет о разнице температур между поверхностью кожи и окружающей средой, за счет которой и получается даровое электричество. «Эта разница очень важна, чем она больше, тем больше выработка энергии, независимо от того, находитесь ли вы в полярном регионе или в пустыне. Чтобы начать вырабатывать электроэнергию достаточно разницы в один градус Цельсия», – объясняет 29-летний Франко Мембрини. Использовать всю тепловую энергию человеческого тела со 100-процентной эффективностью невозможно.
Внешний контент
Тем не менее, «использование ТЭГ представляют собой, с нашей точки зрения, довольно многообещающую стратегию с огромным потенциалом». По его расчетам, тепло, вырабатываемое более чем 7,7 миллиардами жителей Земли, может обеспечить до 10 % от всей энергии, потребляемой на планете. «Каждый день взрослый человек выделяет в среднем 3 кВт⋅ч энергии, этого объема хватило бы на работу современного жидкокристаллического телевизора в течение 30 часов».
Оптимизация забытой технологии
«Использовать человеческую энергию в качестве возобновляемого источника электричества ученые и инженеры пытаются уже с начала 20 века», — напомнил Франко Мембрини, приведя в пример радиопередатчики, получавшие энергию за счет ручной динамо-машинки и широко распространенные в 1940-е годы. Однако быстрый прогресс, достигнутый в области производства аккумуляторов, отодвинул такие энергосистемы на второй план, которые могли бы подпитываться людьми. Успехи, достигнутым в области материаловедения и в сфере производства переносных устройств, энергия, производимая телом человека, снова вызывает живейший интерес инженеров.
«Эффект Зеебека»
Явление возникновения ЭДС (электродвижущей силы) на концах последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах. Этот эффект иногда называют также «термоэлектрическим эффектом».
Открыт в 1821 году немецким физиком Томасом Иоганном Зеебеком (Thomas Johann Seebeck; 1770–1831). Результаты своих опытов он в 1822 году опубликовал в «Докладах Прусской академии наук» в формате статьи под названием «К вопросу о магнитной поляризации некоторых металлов и руд, возникающей в условиях разности температур».
В 1980 году компания Bulova выпустила разработанные в г. Биль (кантон Берн) часы Thermatron, работающие за счет выделяемой телом энергии. Позднее их производство было прекращено из-за технических трудностей.
В 2009 году инженер ETH Цюриха Вульф Глатц (Wulf Glatz) получил премию ассоциации Swisselectric за разработку термоэлектрического генератора, использующего разницу температур между воздухом и источником тепла.
В 2013 году телекоммуникационная компания Vodafone и Саутгемптонский Университет представили спальный мешок, способный использовать тепло человеческого тела для заряда батареи мобильного телефона.
Термоэлектрические генераторы также используются в космосе. Они вырабатывали энергию для космических зондов «Вояджер» и «Галилео». Новейшее устройство установлено на марсоходе «Персеверанс», который недавно опустился на поверхность Марса.
«По сути мы взяли уже существующую технологию и просто оптимизировали ее для нужд нашей эпохи», — пояснил Франко Мембрини. В самом деле, «эффект Зеебека» известен ученым уже давно. Мы разговариваем с Рене Росси (René Rossi), директор «Лаборатории биомиметических мембран и тканей» швейцарской «Федеральной сертификационной Лаборатории материаловедения» (Empa). «До настоящего времени применение этого эффекта ограничивалось низкой энергоэффективностью предлагавшихся технических систем.
Показать больше
Показать больше
В швейцарских горах открылся первый в мире солнечный подъемник!
Этот контент был опубликован на 11 апреля 2018 года Владельцы гостиницы в Штауберне решили: почему бы не сделать для своих гостей подъем в гору настоящим высокотехнологичным приключением?
Но сегодня мы уже в состоянии перейти от масштаба милливатт к нескольким десятым частям 1-го Ватта, а это уже представляет с точки зрения рыночного потенциала значительную потребительскую и коммерческую ценность». По его словам, в настоящее время исследования ведутся в нескольких направлениях. «Например, мы разрабатываем умный текстиль, использующий солнечную энергию. Другие исследовательские рабочие группы стараются найти способ преобразования механической энергии в электричество, например, при помощи интеграции в подошвы обуви особых генераторов».
Заряжая во сне
Что касается компании Mithras, то она работает сейчас над реализацией двух идей. Во-первых, она хочет разработать мини-ТЭГ в виде носимого на запястье браслета, который можно было бы использовать для зарядки мобильных устройств. Во-вторых, компания ищет способ найти инженерное решение, при котором термоэлектрический генератор встраивался бы непосредственно в устройство и подключался бы к его батарее.
Единственным предварительным условием для производства электричества является прямой контакт устройства с телом. «Неважно, пьете ли вы кофе, занимаетесь ли спортом или спите, батарея будет заряжаться сама по себе», – говорит Франко Мембрини. В настоящее время на его фирме работают шесть человек, компания хочет сосредоточить все свои усилия в основном на разработке индивидуальных медицинских приборов, с учетом их, как правило, низкого энергопотребления.
Показать больше
Швейцарские стартапы: история невероятного взлета!
Швейцарские стартапы способны порой объединять и творчество и почти чудотворство!
«Мы хотели бы, чтобы в будущем такие устройства, как инсулиновые помпы, слуховые протезы или биодатчики, отслеживающие температуру тела и иные жизненно важные функции, были бы полностью автономными, не зависящими от внешних источников энергии. Ведь а таком случае можно избежать проблем, связанных как с отказом батарей, так и с возможными осложнениями в результате хирургической операции по их замене».
Эту технологию можно было бы применять и для зарядки мобильных телефонов, хотя они в настоящее время и не входят в список приоритетов компании Mithras. «С точки зрения нашей технологии обычный смартфон потребляет все еще слишком много энергии. В лучшем случае мы могли бы научиться продлевать срок действия его батарей», — резюмирует Франко Мембрини.
В соответствии со стандартами JTI
Если вы хотите начать разговор на тему, поднятую в этой статье, или хотите сообщить о фактических ошибках, напишите нам по адресу russian@swissinfo.ch.
Читать далее
Показать больше
Лучшие стартапы Швейцарии в 2018 году
Этот контент был опубликован на 07 сентября 2018 года Богатство Швейцарии возникло на основе духа инноваций и прогресса. В стране представили лучшие стартапы 2018-го года.
Показать больше
Solar Impulse – бесполезная игрушка или шаг в будущее?
Этот контент был опубликован на 04 мая 2015 года Самолет, летающий при помощи энергии солнца, что это такое: просто маркетинговый фокус или настоящая крылатая лаборатория?
Показать больше
А вы надели бы платье из 3D-принтера?
Этот контент был опубликован на 25 апреля 2017 года Прогресс не стоит на месте: недавно на ежегодных Днях моды и текстиля в Цюрихе была представлена одежда, распечатанная на 3D-принтере.
Показать больше
Европейская энергия Солнца и швейцарские технологии
Этот контент был опубликован на 22 октября 2020 года ЕС рассчитывает, что швейцарская стартап-компания из кантона Во поможет европейской солнечной энергетике.
Показать больше
Доклад МГЭИК: «Следующие 10 лет будут решающими»
Этот контент был опубликован на 11 октября 2018 года МГЭИК: ограничение повышения средней температуры 1,5 градусами Цельсия еще возможно, но выбросы CO2 должны быть уменьшены до нуля к 2050 году.
Показать больше
Беспилотный транспорт Швейцарии развивается медленно, но верно
Этот контент был опубликован на 30 сентября 2020 года За последние пять лет на швейцарских дорогах появились новые виды автономного транспорта, в том числе – автобусы.
Сколько энергии излучает тело человека
https://ria.ru/20240101/chelovek-1919339182.html
Эксперт рассказал, сколько электричества вырабатывает человек
Эксперт рассказал, сколько электричества вырабатывает человек — РИА Новости, 01.01.2024
Эксперт рассказал, сколько электричества вырабатывает человек
Человеческий организм — маленькая электростанция, где все электрические процессы преобразуются в химические и тепловые, мощность среднего человека сопоставима с РИА Новости, 01.01.2024
2024-01-01T12:16
2024-01-01T12:16
2024-01-01T12:16
МОСКВА, 1 янв — РИА Новости. Человеческий организм — маленькая электростанция, где все электрические процессы преобразуются в химические и тепловые, мощность среднего человека сопоставима с яркой лампочкой — приблизительно 150 ватт, рассказал РИА Новости терапевт онлайн-сервиса по управлению здоровьем Budu Андрей Рябков. «Организм человека — замкнутая электрическая система, в которой все электрические процессы преобразуются в химические и тепловые. Мощность среднего человека равна 150 ватт. . Так светит яркая лампочка», — сообщил эксперт. В организме человека постоянно происходит множество электрических и электрохимических процессов, отмечает Рябков. В митохондриях — своеобразных «электростанциях» клетки — электрическая энергия преобразуется в энергию химических связей энергетических молекул — АТФ. Клетки нервной системы, по словам эксперта, управляют нашими мышцами и внутренними органами с помощью электрических импульсов, передающихся по нервам со скоростью до 120 метров в секунду. Наши мыслительные процессы неотделимы от множества электрических процессов, лежащих в основе взаимодействия клеток головного мозга. Особенно много электричества генерируется в коротких отростках нервных клетках — дендритах. «Точно подсчитать количество вырабатываемого телом человека электричества практически очень сложно. Человек в среднем потребляет около 2000 килокалорий в день. . По некоторым оценкам, мозг съедает от 200 до 1000 килокалорий (стрессовые ситуации), то есть от 20-40% энергии, что дает оценку средней мощности 30 ватт», — резюмирует эксперт.