Какие типы данных существуют в pandas
Перейти к содержимому

Какие типы данных существуют в pandas

  • автор:

Выборка столбцов pandas dataframe по типу данных

Чтобы выбрать столбцы в pandas DataFrame по типу данных, воспользуйтесь функцией select_dtypes . Если необходимо получить все столбцы типа float , используйте следующий код:

Скопировать код

float_cols = df.select_dtypes('float').columns

Для выбора столбцов различных типов данных, таких как int и bool , примените этот подход:

Скопировать код

int_bool_cols = df.select_dtypes(['int', 'bool']).columns

Существует также возможность отбирать столбцы через атрибут dtypes :

Скопировать код

numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] numeric_cols = df.columns[df.dtypes.isin(numerics)]

Для удобства и обеспечения гибкости выбора типов рекомендуется обернуть код в функцию:

Скопировать код

def get_columns_by_type(df, data_types): """ Данная функция позволяет отобрать столбцы заданных типов данных. """ return df.select_dtypes(include=data_types).columns.tolist()

Выделение по запросу с помощью удобных функций

Гибкий выбор типов через функцию

Чтобы сделать процесс выборки данных более удобным и повторяемым, определите вспомогательную функцию:

Моя шпаргалка по pandas

Один преподаватель как-то сказал мне, что если поискать аналог программиста в мире книг, то окажется, что программисты похожи не на учебники, а на оглавления учебников: они не помнят всего, но знают, как быстро найти то, что им нужно.

Возможность быстро находить описания функций позволяет программистам продуктивно работать, не теряя состояния потока. Поэтому я и создал представленную здесь шпаргалку по pandas и включил в неё то, чем пользуюсь каждый день, создавая веб-приложения и модели машинного обучения.

Нельзя сказать, что это — исчерпывающий список возможностей pandas , но сюда входят функции, которыми я пользуюсь чаще всего, примеры и мои пояснения по поводу ситуаций, в которых эти функции особенно полезны.

1. Подготовка к работе

Если вы хотите самостоятельно опробовать то, о чём тут пойдёт речь, загрузите набор данных Anime Recommendations Database с Kaggle. Распакуйте его и поместите в ту же папку, где находится ваш Jupyter Notebook (далее — блокнот).

Теперь выполните следующие команды.

import pandas as pd import numpy as np anime = pd.read_csv('anime-recommendations-database/anime.csv') rating = pd.read_csv('anime-recommendations-database/rating.csv') anime_modified = anime.set_index('name') 

После этого у вас должна появиться возможность воспроизвести то, что я покажу в следующих разделах этого материала.

2. Импорт данных

▍Загрузка CSV-данных

Здесь я хочу рассказать о преобразовании CSV-данных непосредственно в датафреймы (в объекты Dataframe). Иногда при загрузке данных формата CSV нужно указывать их кодировку (например, это может выглядеть как encoding=’ISO-8859–1′ ). Это — первое, что стоит попробовать сделать в том случае, если оказывается, что после загрузки данных датафрейм содержит нечитаемые символы.

anime = pd.read_csv('anime-recommendations-database/anime.csv') 

Загруженные CSV-данные

Существует похожая функция для загрузки данных из Excel-файлов — pd.read_excel .

▍Создание датафрейма из данных, введённых вручную

Это может пригодиться тогда, когда нужно вручную ввести в программу простые данные. Например — если нужно оценить изменения, претерпеваемые данными, проходящими через конвейер обработки данных.

df = pd.DataFrame([[1,'Bob', 'Builder'], [2,'Sally', 'Baker'], [3,'Scott', 'Candle Stick Maker']], columns=['id','name', 'occupation']) 

Данные, введённые вручную

▍Копирование датафрейма

Копирование датафреймов может пригодиться в ситуациях, когда требуется внести в данные изменения, но при этом надо и сохранить оригинал. Если датафреймы нужно копировать, то рекомендуется делать это сразу после их загрузки.

anime_copy = anime.copy(deep=True) 

Копия датафрейма

3. Экспорт данных

▍Экспорт в формат CSV

При экспорте данных они сохраняются в той же папке, где находится блокнот. Ниже показан пример сохранения первых 10 строк датафрейма, но то, что именно сохранять, зависит от конкретной задачи.

rating[:10].to_csv('saved_ratings.csv', index=False) 

Экспортировать данные в виде Excel-файлов можно с помощью функции df.to_excel .

4. Просмотр и исследование данных

▍Получение n записей из начала или конца датафрейма

Сначала поговорим о выводе первых n элементов датафрейма. Я часто вывожу некоторое количество элементов из начала датафрейма где-нибудь в блокноте. Это позволяет мне удобно обращаться к этим данным в том случае, если я забуду о том, что именно находится в датафрейме. Похожую роль играет и вывод нескольких последних элементов.

anime.head(3) rating.tail(1) 

Данные из начала датафрейма

Данные из конца датафрейма

▍Подсчёт количества строк в датафрейме

Функция len(), которую я тут покажу, не входит в состав pandas . Но она хорошо подходит для подсчёта количества строк датафреймов. Результаты её работы можно сохранить в переменной и воспользоваться ими там, где они нужны.

len(df) #=> 3 

▍Подсчёт количества уникальных значений в столбце

Для подсчёта количества уникальных значений в столбце можно воспользоваться такой конструкцией:

len(ratings['user_id'].unique()) 

▍Получение сведений о датафрейме

В сведения о датафрейме входит общая информация о нём вроде заголовка, количества значений, типов данных столбцов.

anime.info() 

Сведения о датафрейме

Есть ещё одна функция, похожая на df.info — df.dtypes . Она лишь выводит сведения о типах данных столбцов.

▍Вывод статистических сведений о датафрейме

Знание статистических сведений о датафрейме весьма полезно в ситуациях, когда он содержит множество числовых значений. Например, знание среднего, минимального и максимального значений столбца rating даёт нам некоторое понимание того, как, в целом, выглядит датафрейм. Вот соответствующая команда:

anime.describe() 

Статистические сведения о датафрейме

▍Подсчёт количества значений

Для того чтобы подсчитать количество значений в конкретном столбце, можно воспользоваться следующей конструкцией:

anime.type.value_counts() 

Подсчёт количества элементов в столбце

5. Извлечение информации из датафреймов

▍Создание списка или объекта Series на основе значений столбца

Это может пригодиться в тех случаях, когда требуется извлекать значения столбцов в переменные x и y для обучения модели. Здесь применимы следующие команды:

anime['genre'].tolist() anime['genre'] 

Результаты работы команды anime[‘genre’].tolist()

Результаты работы команды anime[‘genre’]

▍Получение списка значений из индекса

Поговорим о получении списков значений из индекса. Обратите внимание на то, что я здесь использовал датафрейм anime_modified , так как его индексные значения выглядят интереснее.

anime_modified.index.tolist() 

Результаты выполнения команды

▍Получение списка значений столбцов

Вот команда, которая позволяет получить список значений столбцов:

anime.columns.tolist() 

Результаты выполнения команды

6. Добавление данных в датафрейм и удаление их из него

▍Присоединение к датафрейму нового столбца с заданным значением

Иногда мне приходится добавлять в датафреймы новые столбцы. Например — в случаях, когда у меня есть тестовый и обучающий наборы в двух разных датафреймах, и мне, прежде чем их скомбинировать, нужно пометить их так, чтобы потом их можно было бы различить. Для этого используется такая конструкция:

anime['train set'] = True 

▍Создание нового датафрейма из подмножества столбцов

Это может пригодиться в том случае, если требуется сохранить в новом датафрейме несколько столбцов огромного датафрейма, но при этом не хочется выписывать имена столбцов, которые нужно удалить.

anime[['name','episodes']] 

Результат выполнения команды

▍Удаление заданных столбцов

Этот приём может оказаться полезным в том случае, если из датафрейма нужно удалить лишь несколько столбцов. Если удалять нужно много столбцов, то эта задача может оказаться довольно-таки утомительной, поэтому тут я предпочитаю пользоваться возможностью, описанной в предыдущем разделе.

anime.drop(['anime_id', 'genre', 'members'], axis=1).head() 

Результаты выполнения команды

▍Добавление в датафрейм строки с суммой значений из других строк

Для демонстрации этого примера самостоятельно создадим небольшой датафрейм, с которым удобно работать. Самое интересное здесь — это конструкция df.sum(axis=0) , которая позволяет получать суммы значений из различных строк.

df = pd.DataFrame([[1,'Bob', 8000], [2,'Sally', 9000], [3,'Scott', 20]], columns=['id','name', 'power level']) df.append(df.sum(axis=0), ignore_index=True) 

Результат выполнения команды

Команда вида df.sum(axis=1) позволяет суммировать значения в столбцах.

Похожий механизм применим и для расчёта средних значений. Например — df.mean(axis=0) .

7. Комбинирование датафреймов

▍Конкатенация двух датафреймов

Эта методика применима в ситуациях, когда имеются два датафрейма с одинаковыми столбцами, которые нужно скомбинировать.

В данном примере мы сначала разделяем датафрейм на две части, а потом снова объединяем эти части:

df1 = anime[0:2] df2 = anime[2:4] pd.concat([df1, df2], ignore_index=True) 

Датафрейм df1

Датафрейм df2

Датафрейм, объединяющий df1 и df2

▍Слияние датафреймов

Функция df.merge , которую мы тут рассмотрим, похожа на левое соединение SQL. Она применяется тогда, когда два датафрейма нужно объединить по некоему столбцу.

rating.merge(anime, left_on=’anime_id’, right_on=’anime_id’, suffixes=(‘_left’, ‘_right’)) 

Результаты выполнения команды

8. Фильтрация

▍Получение строк с нужными индексными значениями

Индексными значениями датафрейма anime_modified являются названия аниме. Обратите внимание на то, как мы используем эти названия для выбора конкретных столбцов.

anime_modified.loc[['Haikyuu!! Second Season','Gintama']] 

Результаты выполнения команды

▍Получение строк по числовым индексам

Эта методика отличается от той, которая описана в предыдущем разделе. При использовании функции df.iloc первой строке назначается индекс 0 , второй — индекс 1 , и так далее. Такие индексы назначаются строкам даже в том случае, если датафрейм был модифицирован и в его индексном столбце используются строковые значения.

Следующая конструкция позволяет выбрать три первых строки датафрейма:

anime_modified.iloc[0:3] 

Результаты выполнения команды

▍Получение строк по заданным значениям столбцов

Для получения строк датафрейма в ситуации, когда имеется список значений столбцов, можно воспользоваться следующей командой:

anime[anime['type'].isin(['TV', 'Movie'])] 

Результаты выполнения команды

Если нас интересует единственное значение — можно воспользоваться такой конструкцией:

anime[anime[‘type’] == 'TV'] 

▍Получение среза датафрейма

Эта техника напоминает получение среза списка. А именно, речь идёт о получении фрагмента датафрейма, содержащего строки, соответствующие заданной конфигурации индексов.

anime[1:3] 

Результаты выполнения команды

▍Фильтрация по значению

Из датафреймов можно выбирать строки, соответствующие заданному условию. Обратите внимание на то, что при использовании этого метода сохраняются существующие индексные значения.

anime[anime['rating'] > 8] 

Результаты выполнения команды

9. Сортировка

Для сортировки датафреймов по значениям столбцов можно воспользоваться функцией df.sort_values :

anime.sort_values('rating', ascending=False) 

Результаты выполнения команды

10. Агрегирование

▍Функция df.groupby и подсчёт количества записей

Вот как подсчитать количество записей с различными значениями в столбцах:

anime.groupby('type').count() 

Результаты выполнения команды

▍Функция df.groupby и агрегирование столбцов различными способами

Обратите внимание на то, что здесь используется reset_index() . В противном случае столбец type становится индексным столбцом. В большинстве случаев я рекомендую делать то же самое.

anime.groupby(["type"]).agg(< "rating": "sum", "episodes": "count", "name": "last" >).reset_index() 

▍Создание сводной таблицы

Для того чтобы извлечь из датафрейма некие данные, нет ничего лучше, чем сводная таблица. Обратите внимание на то, что здесь я серьёзно отфильтровал датафрейм, что ускорило создание сводной таблицы.

tmp_df = rating.copy() tmp_df.sort_values('user_id', ascending=True, inplace=True) tmp_df = tmp_df[tmp_df.user_id < 10] tmp_df = tmp_df[tmp_df.anime_id < 30] tmp_df = tmp_df[tmp_df.rating != -1] pd.pivot_table(tmp_df, values='rating', index=['user_id'], columns=['anime_id'], aggfunc=np.sum, fill_value=0) 

Результаты выполнения команды

11. Очистка данных

▍Запись в ячейки, содержащие значение NaN, какого-то другого значения

Здесь мы поговорим о записи значения 0 в ячейки, содержащие значение NaN . В этом примере мы создаём такую же сводную таблицу, как и ранее, но без использования fill_value=0 . А затем используем функцию fillna(0) для замены значений NaN на 0 .

pivot = pd.pivot_table(tmp_df, values='rating', index=['user_id'], columns=['anime_id'], aggfunc=np.sum) pivot.fillna(0) 

Таблица, содержащая значения NaN

Результаты замены значений NaN на 0

12. Другие полезные возможности

▍Отбор случайных образцов из набора данных

Я использую функцию df.sample каждый раз, когда мне нужно получить небольшой случайный набор строк из большого датафрейма. Если используется параметр frac=1 , то функция позволяет получить аналог исходного датафрейма, строки которого будут перемешаны.

anime.sample(frac=0.25) 

Результаты выполнения команды

▍Перебор строк датафрейма

Следующая конструкция позволяет перебирать строки датафрейма:

for idx,row in anime[:2].iterrows(): print(idx, row) 

Результаты выполнения команды

▍Борьба с ошибкой IOPub data rate exceeded

Если вы сталкиваетесь с ошибкой IOPub data rate exceeded — попробуйте, при запуске Jupyter Notebook, воспользоваться следующей командой:

jupyter notebook — NotebookApp.iopub_data_rate_limit=1.0e10 

Итоги

Здесь я рассказал о некоторых полезных приёмах использования pandas в среде Jupyter Notebook. Надеюсь, моя шпаргалка вам пригодится.

Уважаемые читатели! Есть ли какие-нибудь возможности pandas , без которых вы не представляете своей повседневной работы?

  • Блог компании RUVDS.com
  • Веб-разработка
  • Python

Работаем с Pandas: основные понятия и реальные данные

Разбираемся в том, как работает библиотека Pandas, и проводим первый анализ данных.

Иллюстрация: Катя Павловская для Skillbox Media

Антон Яценко

Антон Яценко
Изучает Python, его библиотеки и занимается анализом данных. Любит путешествовать в горах.

Python используют для анализа данных и машинного обучения, подключая к нему различные библиотеки: Pandas, Matplotlib, NumPy, TensorFlow и другие. Каждая из них используется для решения конкретных задач.

Сегодня мы поговорим про Pandas: узнаем, для чего нужна эта библиотека, как импортировать её в Python, а также проанализируем свой первый датасет и выясним, в каких странах самый быстрый и самый медленный интернет.

Для чего нужна библиотека Pandas в Python

Pandas — главная библиотека в Python для работы с данными. Её активно используют аналитики данных и дата-сайентисты. Библиотека была создана в 2008 году компанией AQR Capital, а в 2009 году она стала проектом с открытым исходным кодом с поддержкой большого комьюнити.

Вот для каких задач используют библиотеку.

Аналитика данных: продуктовая, маркетинговая и другая. Работа с любыми данными требует анализа и подготовки: необходимо удалить или заполнить пропуски, отфильтровать, отсортировать или каким-то образом изменить данные. Pandas в Python позволяет быстро выполнить все эти действия, а в большинстве случаев ещё и автоматизировать их.

Data science и работа с большими данными. Pandas помогает подготовить и провести первичный анализ данных, чтобы потом использовать их в машинном или глубоком обучении.

Статистика. Библиотека поддерживает основные статистические методы, которые необходимы для работы с данными. Например, расчёт средних значений, их распределение по квантилям и другие.

Работа с Pandas

Для анализа данных и машинного обучения обычно используются особые инструменты: Google Colab или Jupyter Notebook. Это специализированные IDE, позволяющие работать с данными пошагово и итеративно, без необходимости создавать полноценное приложение.

В этой статье мы посмотрим на Google Colab, облачное решение для работы с данными, которое можно запустить в браузере на любом устройстве: десктопе, ноутбуке, планшете или даже смартфоне.

Каждая строчка кода на скриншоте — это одно действие, результат которого Google Colab и Jupyter Notebook сразу демонстрируют пользователю. Это удобно в задачах, связанных с аналитикой и data science.

Устанавливать Pandas при работе с Jupyter Notebook или Google Colab не требуется. Это стандартная библиотека, которая будет доступна сразу после их запуска. Останется только импортировать её в ваш код.

Series отображается в виде таблицы с индексами элементов в первом столбце и значениями во втором.

DataFrame — основной тип данных в Pandas, вокруг которого строится вся работа. Его можно представить в виде обычной таблицы с любым количеством столбцов и строк. Внутри ячеек такой «таблицы» могут быть данные самого разного типа: числовые, булевы, строковые и так далее.

У DataFrame есть и индексы строк, и индексы столбцов. Это позволяет удобно сортировать и фильтровать данные, а также быстро находить нужные ячейки.

Создадим простой DataFrame с помощью словаря и посмотрим на его отображение:

Мы видим таблицу, строки которой имеют индексы от 0 до 3, а «индексы» столбцов соответствуют их названиям. Легко заметить, что датафрейм состоит из трёх Series: Город, Год основания и Население. Оба типа индексов можно использовать для навигации по данным.

Импорт данных

Pandas позволяет импортировать данные разными способами. Например, прочесть их из словаря, списка или кортежа. Самый популярный способ — это работа с файлами .csv, которые часто применяются в анализе данных. Для импорта используют команду pd.read_csv().

read_csv имеет несколько параметров для управления импортом:

  • sep позволяет явно указать разделитель, который используется в импортируемом файле. По умолчанию значение равно ,, что соответствует разделителю данных в файлах формата .csv. Этот параметр полезен при использовании нестандартных разделителей в исходном файле, например табуляции или точки с запятой;
  • dtype позволяет указать тип данных в столбцах после загрузки файла формата .csv. Полезно в тех случаях, когда формат данных автоматически определился неверно. Например, даты часто импортируются в виде строковых переменных, хотя для них существует отдельный тип.

Подробно параметры, позволяющие настроить импорт csv, описаны в документации.

Давайте импортируем датасет с информацией о скорости мобильного и стационарного интернета в отдельных странах. Готовый датасет скачиваем с Kaggle. Это файл в формате .csv. Параметры для read_csv не указываем, так как наши данные уже подготовлены для анализа.

В верхней части датафрейма мы видим названия столбцов: country (страна), broadband (средняя скорость интернета) и mobile (средняя скорость мобильного интернета). Слева указаны индексы — от 0 до 176. То есть всего у нас 177 строк. В нижней части таблицы Pandas отображает и эту информацию.

Выводить таблицу полностью не обязательно. Для знакомства с данными достаточно показать пять первых или пять последних строк. Сделать это можно с помощью df.head() или df.tail() соответственно. В скобках можно указать число строк, которое которые будут выведены. По умолчанию параметр равен 5.

Так намного удобнее. Мы можем сразу увидеть названия столбцов и тип данных в столбцах. Также в некоторых ячейках мы видим значение NaN — к нему мы вернёмся позже.

Изучаем данные и описываем их

Теперь нам надо изучить импортированные данные. Действовать будем пошагово.

Шаг 1. Проверяем тип данных в таблице. Это поможет понять, в каком виде представлена информация в датасете — а иногда и найти аномалии. Например, даты могут быть сохранены в виде строк, что неудобно для последующего анализа. Проверить это можно с помощью стандартного метода:

  • столбец country представляет собой тип object. Это тип данных для строковых и смешанных значений;
  • столбцы broadband и mobile имеют тип данных float, то есть относятся к числам с плавающей точкой.

Шаг 2. Быстро оцениваем данные и делаем предварительные выводы. Сделать это можно очень просто: для этого в Pandas существует специальный метод describe(). Он показывает среднее со стандартным отклонением, максимальные, минимальные значения переменных и их разделение по квантилям.

Посмотрим на этот метод в деле:

Пройдёмся по каждой строчке:

  • count — это количество заполненных строк в каждом столбце. Мы видим, что в столбце с данными о скорости мобильного интернета есть пропуски.
  • mean — среднее значение скорости обычного и мобильного интернета. Уже можно сделать вывод, что мобильный интернет в большинстве стран медленнее, чем кабельный.
  • std — стандартное отклонение. Важный статистический показатель, показывающий разброс значений.
  • min и max — минимальное и максимальное значения.
  • 25%, 50% и 75% — значения скорости интернета по процентилям. Если не углубляться в статистику, то процентиль — это число, которое показывает распределение значений в выборке. Например, в выборке с мобильным интернетом 25-й процентиль показывает, что 25% от всех значений скорости интернета меньше, чем 24,4.

Обратите внимание, что этот метод работает только для чисел. Информация для столбца с названием стран отсутствует.

Какой вывод делаем? Проводной интернет в большинстве стран работает быстрее, чем мобильный. При этом скорость проводного интернета в 75% случаев не превышает 110 Мбит/с, а мобильного — 69 Мбит/сек.

Шаг 3. Сортируем и фильтруем записи. В нашем датафрейме данные уже отсортированы от большего к меньшему по скорости проводного интернета. Попробуем найти страну с наилучшим мобильным интернетом. Для этого используем стандартный метод sort_values, который принимает два параметра:

  • Название столбца, по которому происходит сортировка, обязательно должно быть заключено в одинарные или двойные кавычки.
  • Параметр ascending= указывает на тип сортировки. Если мы хотим отсортировать значения от большего к меньшему, то параметру присваиваем False. Для сортировки от меньшего к большему используем True.

Перейдём к коду:

Теперь рейтинг стран другой — пятёрка лидеров поменялась (потому что мы отсортировали данные по другому значению). Мы выяснили, что самый быстрый мобильный интернет в ОАЭ.

Но есть нюанс. Если вернуться к первоначальной таблице, отсортированной по скорости проводного интернета, можно заметить, что у лидера — Монако — во втором столбце написано NaN.

NaN в Python указывает на отсутствие данных. Поэтому мы не знаем скорость мобильного интернета в Монако из этого датасета и не можем сделать однозначный вывод о лидерах в мире мобильной связи.

Попробуем отфильтровать значения, убрав из датафрейма страны с неизвестной скоростью мобильного интернета, и посмотрим на худшие по показателю страны (если оставить NaN, он будет засорять «дно» таблицы и увидеть реальные значения по самому медленному мобильному интернету будет сложновато).

В Pandas существуют различные способы фильтрации для удаления NaN. Мы воспользуемся методом dropna(), который удаляет все строки с пропусками. Важно, что удаляется полностью строка, содержащая NaN, а не только ячейки с пропущенными значениями в столбце с пропусками.

Количество строк в датафрейме при удалении пустых данных уменьшилось до 136. Если вернуться ко второму шагу, то можно увидеть, что это соответствует количеству заполненных строк в столбце mobile в начальном датафрейме.

Сохраним результат в новый датафрейм и назовём его df_without_nan. Изначальный DataFrame стараемся не менять, так как он ещё может нам понадобиться.

Худший мобильный интернет в Афганистане, далее с небольшим отставанием идут Палестина и Венесуэла.

Как можно редактировать датафрейм

Кроме как работать с существующим датафреймом, мы можем менять готовый датафрейм в зависимости от своих задач: добавлять новые строки, удалять существующие, агрегировать данные и так далее.

Вернём нашему df первоначальный вид. Загрузим csv с датасетом повторно:

177 строк — все страны, в том числе те, данные о скорости интернета которых отсутствуют, в списке есть.

Добавление строки

Добавим в наш датафрейм новую страну. Так как в списке их уже 177, пусть это будет Галактическая Республика из «Звёздных войн».

Для добавления информации в датафрейм используется метод concat:

Всё получилось. Галактическая Республика в нашей таблице.

Удаление строк

Строки в Pandas удаляются методом drop. Давайте теперь с его помощью удалим несуществующую страну, которую мы добавили ранее в наш датафрейм:

Галактической Республики больше нет. Датафрейм вернулся в изначальный вид.

Фильтрация строк

Иногда в датафрейме нужно найти определённую строку. Сделать это можно двумя способами: по индексному значению и индексу. Попробуем оба метода.

Фильтрация по индексному значению. Оно соответствует первому столбцу в датафрейме. В нашем случае индексные значения — это числа от 0 до 177.

Выведем на экран страны с индексными значениями 10 и 11:

Фильтрация по индексу. Он в датафрейме всегда начинается с 0. Сделаем срез стран с индексами 5–8. Для этого используется метод iloc.

Получили срез списка с 6-го по 8-й объект. Обратите внимание, что индекс и индексные значения строк различаются.

Фильтрация датафрейма по значениям

Выведем на экран только те страны, где скорость мобильного интернета более 100 Мбит/с:

Важно!

При использовании этого метода сохраняются индексные значения анализируемого датафрейма.

Агрегирование данных

Агрегирование данных — это функция, которая принимает несколько отдельных значений и возвращает сводные данные.

Рассчитаем среднее значение скорости интернета для всех стран с помощью функции agg, передав туда поле mean:

Среднее значение скорости интернета по всем странам — 72,67.

После завершения редактирования датафрейма его можно сохранить в CSV или другом формате:

new_list1.to_csv (r' C:\Users\Skillbox\Desktop\country.csv')

Сохранённый файл появится по указанному пути.

Что дальше?

Pandas в Python — мощная библиотека для анализа данных. В этой статье мы прошли по базовым операциям. Подробнее про работу библиотеки можно узнать в документации. Углубиться в работу с библиотекой можно благодаря специализированным книгам:

  • «Изучаем pandas» Майкла Хейдта и Артёма Груздева;
  • «Thinking in Pandas: How to Use the Python Data Analysis Library the Right Way», Hannah Stepanek;
  • «Hands-On Data Analysis with Pandas: Efficiently perform data collection, wrangling, analysis, and visualization using Python», Stefanie Molin.

Читайте также:

  • Библиотеки в программировании: для чего нужны и какими бывают
  • Тест: угадайте, где эзотерические языки программирования, а где — нет
  • Как начать программировать на Python: экспресс-гайд

Изменение типа столбца в pandas

Баннер Баннер

Часто возникает необходимость изменить тип данных столбцов в DataFrame. Например, при создании DataFrame из списка списков, типы данных столбцов определяются автоматически, что может не всегда соответствовать ожидаемому.

table = [ ['a', '1.2', '4.2' ], ['b', '70', '0.03'], ['x', '5', '0' ], ] df = pd.DataFrame(table)

В этом примере, все столбцы будут иметь тип данных object, хотя второй и третий столбцы содержат числовые значения, которые мы хотели бы иметь в виде чисел с плавающей точкой.

Изменение типа данных столбцов после создания DataFrame

Если DataFrame уже создан, то для изменения типа данных столбцов можно использовать метод astype() .

df[1] = df[1].astype(float) df[2] = df[2].astype(float)

Здесь мы преобразовали второй и третий столбцы в числа с плавающей точкой.

Задание типа данных столбцов при создании DataFrame

Также типы данных столбцов можно задать сразу при создании DataFrame, используя параметр dtype в функции pd.DataFrame() .

df = pd.DataFrame(table, dtype=float)

Однако, в этом случае все столбцы будут иметь заданный тип данных, что может вызвать ошибки, если в некоторых столбцах содержатся нечисловые данные.

Динамическое изменение типа данных столбцов

Если в DataFrame много столбцов и неизвестно, какие из них нужно преобразовать, можно использовать метод apply() , который применяет указанную функцию к каждому столбцу.

df = df.apply(lambda col: col.astype(float) if col.str.replace('.','').str.isdigit().all() else col)

В этом примере мы применяем функцию, которая проверяет, содержат ли все строки в столбце только числовые символы, и если это так, преобразует столбец в числа с плавающей точкой.

Таким образом, есть несколько способов изменить тип данных столбцов в pandas DataFrame, и выбор конкретного метода зависит от конкретной ситуации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *